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Abstract—Spectrum monitoring via crowdsourcing is a tech-
nique that promises to enable opportunistic spectrum access.
Crowdsourcing aims to provide incentives to users to deploy
a large number of cheap but potentially noisy sensors. The
sensors all send their data to a fusion center, where typically
some algorithms are used to remove the noise from the data.
Such crowdsourced monitoring of spectrum has been shown
to be feasible in practice in multiple studies. One of the key
goals of such monitoring is to identify any users that are
violating the protocols of accessing spectrum. While a number
of crowdsourcing techniques to identify such violations have
been proposed, a key challenge that remains is to minimize the
cost of data consumption and energy of running the sensors.
In this work, we propose sequential probing of sensors to
accurately localize/identify such transmitters. We formulate this
as a Gaussian Process multi-armed bandit problem, and use
a widely known solution technique called Upper Confidence
Bound to solve it. We next observe that such sequential probing
incurs additional latency, and use batched selection of sensors in
few rounds to reduce latency. We show that instead of naively
selecting sensors in parallel batches, an intelligent technique
of selecting sensors called Gaussian Process Adaptive Upper
Confidence Bound (GP-AUCB) can lead to selection of sensors
that can lead to more accurate localization. Finally, we show the
tradeoff between accuracy of localization, latency incurred and
number of selected sensors via simulations.

I. INTRODUCTION

With the increasing cost of RF spectrum, there is a perceived
need to monitor and protect it from unauthorized users. A key
technique proposed for such spectrum patrolling is to utilize
cheap crowdsourced sensors [1]–[4]. Such crowdsourced sen-
sors have the advantage of being relatively easier to deploy as
they have a relatively small form-factor. However, they also
have the problem that they generate a huge amount of data,
and the data generated is noisy. Thus, cleaning and processing
this data to obtain inferences about the location or presence
of transmitters requires sending it to a fusion center over
a network. This increases the runtime cost of running such
system, which if unchecked would increase the overhead of
maintaining a tiered spectrum access system.

Prior works have limited the cost of such spectrum pa-
trolling in a crowdsourced spectrum system by selecting the
most relevant sensors. [1], [5]–[7]. For example, [1] uses a
greedy feature selection technique called Maximum Relevance
Minimum Redundance to select sensors. The work [5] pro-
poses a framework based on submodularity to greedily select
the most relevant sensors. POMES [6] considers the monetary

incentive that needs to be paid to users, and selects a sensor
only if the benefit obtained by using it is higher than the
offered monetary incentive. Finally, [7] identifies the sensors
that should be utilized when they can harvest their own energy.

A key common point among all the studies discussed
above is that they all select the sensors a priori. In other
words, the sensors are chosen before transmitter localiza-
tion/identification. Alternatively, the decision about whether
to probe the sensors is taken individually for each sensor [6],
[7], which can lead to suboptimal results. On the other hand, a
process of sequential selection of sensors, where the output of
one selected sensor is used to guide the selection of subsequent
sensors can lead to substantial improvement of accuracy at a
lower cost.

However, designing an algorithm of sequential selection of
sensors is non-trivial. The key reason is that the crowdsourced
sensors are noisy in nature. A naive greedy approach that
selects the sensor where the transmitter is most likely to be
present might end up influenced by the noise and selecting a
poor sensor. Note that in traditional sensor selection, a modi-
fied form of the greedy algorithm provides good performance
due to the principle of submodularity [5], [8]. In sequential
selection, on the other hand, there is an inherent tradeoff
between exploiting the information given by the sensors, while
also exploring sufficiently to ensure that the noisy sensors do
not influence the selection too much.

A second challenge that comes up is that selecting such sen-
sors sequentially can increase the latency of localization. This
has potentially undesirable implications, as an unauthorized
transmitter might potentially stop its transmission before it is
localized [9]. To mitigate this problem, as a second step, we
design a batched selection technique, where multiple sensors
are selected in rounds. We show that by selecting a relatively
few number of batches, it is possible to get accuracy very close
to fully sequential selection, while incurring relatively small
additional latency.

We formulate the problem of using the tradeoff between ex-
ploration and exploitation as a multi-armed bandit problem. A
number of prior works have posed the problem of localization
as one of Gaussian Process Regression [10], [11]. We borrow
this approach of localization because it is known to scale to
large areas, as well as lead to efficient solutions. Thus, our
sensor selection strategies work by modeling the problem of
sequential selection as Gaussian process multi-armed bandit



problem. We map the selection of sensors as a case of pulling
the arms in a multi-armed bandit problem. This leads us to a
widely used algorithm called Upper Confidence Bound (UCB)
in selecting the sensors [12]. We show via simulation that
our technique works much better in practice than the greedy
algorithm.

We address the problem of latency involved in sequential
sensor selection in the following way. Instead of sequentially
selecting all the sensors, we select a batch of sensors together.
We formulate this as the related problem of batched Gaussian
Process multi-armed bandit problem [13], and use a modified
form of UCB to select the sensors. Again, we show via
simulation that the amount of accuracy lost in localization due
to batches is relatively small.

We summarize our contributions as follows:
1) We first formulate the problem of sequential sensor

selection to realize substantial cost savings while lo-
calizing an unauthorized transmitter as an instance of
Gaussian Process multi-armed bandit problem.

2) We utilize the Upper Confidence Bound technique to
solve the problem of sequential sensor selection.

3) We further reduce the latency involved in selecting
sensors by selecting them in parallel batches. To do so,
we use an algorithm called Gaussian Process Adaptive
Upper Confidence Bound, which performs better than
the standard selection in batches.

4) Finally, we study the tradeoffs between the three param-
eters, latency, cost and accuracy of localization using
our designed techniques. Our evaluation shows that
selecting sensors in parallel batches leads to increase
in localization error due to inferior feedback. However,
the adaptive upper confidence can mitigate some of this
increase in localization error.

The rest of this paper is organized as follows. We first
discuss related works in Section II. We next explain the system
model in depth and the technique of sequential and batched
sensor selection in Section III. We evaluate our techniques in
Section IV, and conclude in Section V.

II. RELATED WORK

Energy-efficient Spectrum Sensing: The rise of the Internet
of Things with its demand of spectrum has led to the need
for energy efficient spectrum sensing. There are broadly three
types of works that try to make spectrum sensing energy-
efficient. The first technique of improving energy-efficiency
is to utilize energy harvesting [7], [14], [15], where energy
from ambient sources is utilized by the spectrum sensors.
The second technique is to utilize more efficient hardware
like FPGA’s [16] or embedding hardware to smartphones [4].
The third category of works deal with intelligent selection
of channels and/or sensors for sensing. For example, [17]
senses the channels that are more likely to be used with
higher probability than the other more occupied channels.
A similar technique is used by [18], where past history is
utilized to determine the channels that should be scanned. A
number of works focus on selecting the most relevant users
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Fig. 1. An illustration of the system of sequential sensor selection to localize
an unauthorized transmitter. The number denotes the batch in which the sensor
is selected.

in an environment where a number of sensors are present [5],
[19]. Our work builds on these techniques of sensor selection,
but attempts to select sensors in a more intelligent way by
selecting them in sequential fashion. The work [20] comes
closest to our work. However, unlike our Gaussian Process
Regression technique, it uses a hypothesis-based approach,
which makes it harder to scale to larger number of sensors
in practice.

Localization using Gaussian Processes: A number of
works perform localization using Gaussian processes under
different settings. For example, [10] showed that localization
using Gaussian processes outperforms other techniques like
k-nearest neighbors. Gaussian processes is the most common
choice for fingerprint-based localization, using WiFi [11],
low-powered wide area network (LPWAN) [21] and cellular
networks [22]. Unlike our work, these works do not focus on
selecting the most relevant sensors while performing localiza-
tion.

Multi-armed bandit Problem in Gaussian Processes: Se-
lecting sensors in a Gaussian Process is done using a greedy
algorithm, as it provides near-optimal performance [23]. In this
case, the greedy algorithm chooses the sensor with the highest
mean. However, as shown in this study as well as our own
experiments, the greedy algorithm performs poorly in case of
sequential sensor selection with noisy sensors. Thus, the work
[12] proposes an algorithm called Gaussian Process Upper
Confidence Bound which selects the sensor with the highest
value of the weighted sum of mean and standard deviation
of each sensor. The batched version of this problem was
studied in [13]. Our study models the problems of sequential
and batched sensor selection as taking action in Gaussian
processes, and then studies the performance tradeoffs for
different batch sizes. A few recent works propose a different
algorithm to solve this problem called parallel Thompson
Sampling [24], but this is orthogonal to our approach and we
do not consider it in this study.



III. PROBLEM FORMULATION

We define the problem as follows. We are given an area,
which may contain a stationary transmitter at an unknown
location. A set of spectrum sensors S are deployed within this
area. Selecting a sensor would immediately send its output to
the fusion center, and the data becomes available with some
delay. For convenience, we denote the set of sensors selected
in round k by Tk, and their output by xk. For convenience,
we also denote the set of sensors selected till round k as Rk,
i.e.

Rk = T1 ∪ ... ∪ Tk.

Note that each of the sensors send the power received plus an
additional noise to the fusion center. We assume that the noise
of each sensor is Gaussian in nature, with the variance of a
sensor being equal to ε.

The performance of localization is measured in terms of the
estimate of the location of the transmitter. A point having the
highest value of power is the actual location of the transmitter.
In our setting, since the noise is Gaussian with known variance,
the most accurate possible solution is given by the position
p(xS) obtained using the observations from all possible sen-
sors xS 1. Thus, we define the objective as minimizing the
Euclidean distance between the estimate obtained using all
sensors and the one obtained using the selected subset of
sensors.

Minimize ||p(xRk)− p(xS)||2 subject to |Rk| ≤ B, (1)

where B is the maximum number of sensors that can be
selected.

However, we note that the estimate obtained on selecting
each sensor is obtained via Bayesian update. Since Bayesian
update is known to be non-linear, the overall objective is also
non-linear, which makes solving the above problem difficult.
We therefore make an observation to make the problem linear.
We note that if a transmitter is close to the sensor s, the output
generated on average E[xs] is higher. Thus, we redefine our
objective as that of maximizing the sum of average power
f received across all sensors. Therefore, the objective or
reward to the Gaussian Process multi-armed bandit becomes
the expression:

Maximize
K∑

k=1

f(xk).

We call the best possible solution or the oracle solution x∗ as
the one which was possible if the location of the transmitter
was known. We call the difference between the reward of the
solution given by an algorithm and that of the oracle solution
as the regret G:

Gk =

K∑
k=1

|f(x∗k)− f(xk)| (2)

1Note that as discussed in [25], in the presence of non-Gaussian noise,
selecting all the sensors no longer gives the highest accuracy of localization.

We provide the performance guarantees in terms of regret.
Note that minimizing regret is equivalent to maximizing
reward, so providing bounds on regret also leads to optimality
results on the objective function.

We now study two variants of this problem. The first is the
sequential variant, where the sensors are chosen sequentially,
i.e. |Tk| = 1,∀k. The second is the batched variant, where the
number of allowed rounds is smaller than the sensor budget,
i.e. |Tk| ≥ 1,∃k. In this case, our algorithm has to both decide
the number of sensors to be selected in a round k, as well as
the actual sensors to be selected.

A. Background of Gaussian Process

A Gaussian Process GP (µ(x), k(X,X ′)) is specified by its
mean µ(x) = E[f(x)] and co-variance function k(x, x∗) =
E[(f(x) − µ(x∗))(f(x∗) − µ(x∗))], Where E(.) is expecta-
tion. Consider a prior observation sensor set of size T from
the entire sensor set D, and observe noisy signal sample
yT = [y1...yT ]T at points AT = x1...xT . Let kT (x) =
[k(x1, x)...k(xT , x)]T and KT be the positive definite kernel
matrix [k(x, x∗)]x,x∗∈AT

. Then mean µT (x) , co-variance
k(x, x∗) and variance σ2

T (x) can be mathematically expressed
as follows:

µ(x) = kT (x)T (Kt + σ2I)−1yT , (3)

kT (x, x∗) = k(x, x∗)− kT (x)T (KT + σ2I)− 1kT (x∗), (4)

σ2
T = kT (x, x). (5)

We have taken the Matérn kernel as the choice of positive
definite kernel function, as prior studies like [10] have shown
that it works well in practice. Let Bv be a modified Bessel
function and l be a length scale parameter. Then Matérn kernel
can be defined as follows:

k(x, x∗) = (21−v/Γ(v))rvBv(r), r = ((2v)0.5/l)) ‖ x−x∗ ‖,
(6)

v controls smoothness of the function. Matérn kernel provide
a sub linear regret bound as mentioned in [12].

B. Solution for Sequential process

Maximising f requires us to chose points xt so that the
function f can be estimated well globally. Let us denote
the covariance matrix by K(A,A). Further, let H be the
differential entropy of the probability distribution over the
set of observations. Then, the entropy at a particular sensor
measures the amount of uncertainty or the variance of the
Gaussian process at a particular location. Thus, a good metric
is the reduction in entropy if a sensor is selected, which
is known as the mutual information. Mathematically, the
conditional mutual information gained from each observation
in yA is given by:

I(yA, f) = H(yA)−H(yA|f) = 0.5log|I + σ−2n .K(A,A)|.
(7)

Modelling f as a sample form a GP has the major benefit that
the predictive uncertainty can be used to guide exploration
and exploitation.We chose the algorithm GP-UCB (Gaussian



Algorithm 1 The Gaussian Process Upper Confidence Bound
algorithm (GP-UCB) used to select sensors sequentially
Require: Decision set D, GP prior mean µ0, variance σ2

0 ,
kernel function(marten kernel) k(., .), Maximum Resource
T .
for t = 1, 2, ..T do

Choose xt ← argmaxx∈D[µt−1(x) + β0.5
t σt−1(x) .

βt = 2log(|D|t2π2/6δ), δ ∈ (0, 1)
Sample yt = f(xt) + εt
Perform Bayesian update to obtain µt and σt.

end for

Process Upper Confidence Bound) for selection of the sensor
sets xt at each round t. Let βt be a domain specific time
varying parameter to trade off exploration vs exploitation.βt =
2log(|D|t2π2/6δ), δ ∈ (0, 1). GP-UCB explores by sampling
x with large variance and exploits by sampling x with large
mean. The rule for choosing xt is given by:

xt = arg max
x∈D

[µt−1(x) + β0.5
t σt−1(x)]. (8)

It was shown by [12], that GP-UCB was able to bound regret
with a quantified high probability. Thus, we choose it to solve
this problem.

C. Batched Process

It is possible to select multiple sensors at each round
by selecting the sensors in parallel. Introducing parallelism
reduces the execution time. However, parallelism also comes
with multiple overheads – (i) choosing multiple sensors take
more time than choosing a single sensor, and (ii) the sensors
are selected with inferior feedback. Thus, certain changes
are needed in the basic GP-UCB to take into account these
overheads.

We first model the time as follows. The total time taken
consists of both the time taken to run the Bayesian update
(tbay) as well as average time to select each sensor (tsel). We
model this total time per round as follows.

The cost of execution till round n is given by the weighted
sum of each individual cost:

Cn = 0.3 ∗
n∑

i=1

(tbayi ) + 0.7 ∗
n∑

i=1

(tseli ). (9)

This cost is averaged over multiple simulation in the same
environment. Algorithm presented by [13] could be used to
select B sensors at each time t, but parallelism comes with an
price of inferior feedback. So certain changes are needed to be
made in the sequential process to make parallel selection work
in our scenario. Firstly let’s assume that there is a mapping
fd : N → {N, 0}, this fd the feedback is such that fd[t] ≤
t − 1,∨t ∈ N , in the batched selection setting. fd[t] = t −
1 in the case of sequential selection and fd[t] = 0 when
there is no feedback. In simple batched sensor selection setting
fd[t]batchsize=B = b(t− 1)/BcB.

GP’s predictive variance at time t only depends upon the
Xt−1 = {x1, x2, ....xt−1} and not on y1 : t − 1. In our case

the variance will depend upon the previous sensor which we
have observe not the observed value. So in parallel case the
posterior variance can be calculated similarly like the GP-
UCB, even when the observation are not present. But, the
mean depend upon the actual observation. So, to incorporate
such changes one need to introduce a decision rule that
sequentially chooses actions within the batch along with the
information present. It is akin to running GP-UCB based on
some hallucinated observation. The hallucination is done for
those observation which were yet to get received. Hallucina-
tion is done by using most recent posterior mean for those
observation. Regret of batched process is dependant on the
batch size , but can be made independent by proper choice of
initial data set. This can be done by using uncertainty sampling
for Tinit rounds to collect Dinit sensor points and adding
these back to posterior of the Gaussian process. We utilize the
following lemma from [13] to provide a performance bound
on the regret.

Lemma 1 Suppose the kernel and Tinit and bath size B ≥ 2
and 0 < δ < 1 are fixed. Let Rt be the cumulative regret at
round T of GP-BUCB algorithm , initialised by uncertainty
sampling GP-BUCB algorithm, which ignores feedback for the
first Tinit rounds. Then there exists a constant C∗ independent
of batch size B such that

Pr(RT ≤ C∗Rseq
T + 2‖ f ‖∞Tinit,∨T ≥ 1) ≥ 1− δ. (10)

It can be summarised from Lemma 1, the regret is bounded
by sum of two terms. 1st term is responsible for running
the algorithm after initialisation and second term is for the
initialisation phase. Even though the second term is dependent
on batch size B because Tinit depends on B, it’s influence
is limited and the sum is particularly dependent upon the
C∗Rseq where Rseq is the regret of GP-UCB, so for the
choice of particular kernel (Linear, Marten or RBF) and Tinit
as mentioned in Table 1 of [13], regret bound of GP-BUCB
is independent of B and it is worse than GP-UCB. The choice
of βt will be same as that of GP-UCB.

Algorithm 2 Uncertainty Sampling
Require: Decision set D. GP prior mean µ0, variance σ2

0 ,
kernel function(marten kernel) k(., .).
for t = 1, 2, ..T do

xt ← argmaxx∈D σt−1(x)
Update σt(x)

end for

D. Adaptive Batch

Deriving from GP-BUCB it is also possible for the al-
gorithm to control the flow of parallelism. Reference [13]
suggests an algorithm called GP-AUCB (Gaussian process
adaptive upper control bound) Local which can control the
parallelism. In our problem both the number of iteration and
number of parallel process comes with an cost. So using such
adaptive process to control the batch size and reducing the



Algorithm 3 GP-BUCB
Require: Decision set D, GP prior mean µ0, variance σ2

0 ,
kernel function(marten kernel) k(., .), feedback map fd[.],
number of rounds T .
for t = 1, 2, ....T do

xt = argmaxx∈D[µfd[t](x) + β0.5
t σt−1(x)] .

βt = 2log(|D|t2π2/6δ), δ ∈ (0, 1)
Calculate σt(.)
if fd[t] < fd[t+ 1] then

y∗t = f(x∗t ) + ε∗t for t∗ ∈ (fd[t] + 1, ......fd[t+ 1])
Obtain µfd[t+1](.) . The Hallucinated mean

end if
end for

Algorithm 4 GP-AUCB Local
Require: Decision set D,GP prior mean µ0, variance σ2

0 ,
kernel function k(., .), feedback map fd[.], constant C,
maximum batch size Bmax.
Set fd[t∗] = 0,∨t∗ ≥ 1.
for t = 1, 2...T do

if t − fd[t] > Bmax ‖ ∃x ∈ D : σfd[t](x)/σt−1(x) >
exp(C) then . σfd[t] is hallucinated deviation

yt∗ = f(xt∗) + εt∗ for t∗ ∈ (fd[t− 1], ..., t− 1)
Obtain µt−1(.)
Set fd[t∗] = t− 1,∨t∗ ≥ t

end if
Choose xt = argmaxx∈D[µfd[t](x) + β0.5

t σt−1(x)] .
βt = 2log(|D|t2π2/6δ), δ ∈ (0, 1)

Calculate σt(.)
end for

total number of iteration compared to GP-UCB greatly benefits
our cause. The key behind GP-AUCB algorithm is choosing
the feedback fd[t] online (formally defined in Algorithm
4). This practice helps to limit the amount of information
hallucinated within a batch. Maximum batch size Bmax along
with a constant C is used as stopping criteria to control the
parallelism. The choice of C is abstract and it should maintain
the condition I(f ; yfd[t]+1:t−1|y1:fd[t]) ≤ C,∨x ∈ D,∨t > 1.
Maintaining this condition ensures the confidence intervals
which is used to select actions are faithful to the true posterior.
In other words, σt−1(x) does not become too small compared
to the variance σfd[t](x) of hallucinated observation.

The choice of βt is identical to that of GP-UCB. The
algorithm makes sure that the batch size does not exceed the
maximum batch size criteria. It also runs on a tighter regret
bound than GP-UCB since the constant C only needs to exceed
the local information gain.

As the size of the solution set is finite, finding xt is feasible
and its performance is expected to be stable in the real life
settings. We confirm that this is true in the evaluation.

IV. EVALUATION

Evaluation Setting: For the simulation we have considered
an grid represents an area of 4sqkm with 40×40 grid points.

Fig. 2. Confidence interval of average position error of predicted transmitter
location (with unit of 10 meter) of GP-UCB,Mean only and Variance only
update rule in S-ALL setting.

Then we interpolated the power so obtained to grid points of
dimensions 10, 000×10, 000. Thus, each grid point represents
a single cell of dimension 0.04m2. We assume that sensors are
stationary and their locations are known. Then the transmitter
is placed randomly within the grid, and its location is unknown
to us. The signal power is simulated using the tool SPLAT!
[26] which uses Longley-Rice model. Every sensor reports
the power mixed with some zero-mean Gaussian noise. The
variance of this Gaussian noise is taken as 10% of the received
signal. The outputs of the selected sensors are used to compute
the posterior of Gaussian Process for predicting the position of
the transmitter. The simulation results are produced by taking
an average over 20 unknown transmitter location for each case.

We show two different versions of the results to show
performance. The first technique of evaluation, which we
call as S-ALL, utilizes all the sensors for evaluation of f .
The second technique, which we call as S-BEST, utilizes the
sensor that reports the highest power for evaluation of f .
S-BEST is shown typically to compare the performance for
different number of rounds with the purely sequential GP-
UCB technique. We evaluate in both the evaluation settings.

A. Sequential Selection Process

Figure 2 compares the average position error over 20
arbitrary location of the transmitter, when GP-UCB is used
along with two other update rules, one which only considers
mean (”Mean-only”) and another one which only considers
variance (”Variance-only”). We note that the Variance-only
method is equivalent to a priori (offline) selection of sensors,
as selecting the sensors with highest mutual information or
variance is equivalent to selecting the best sensors a priori.
It can also be seen as a case of pure exploration, since the
sensors are chosen without any utilization of their outputs.
The ”Mean-only” technique, on the other hand, can be seen
as a case of pure exploitation, since the sensors are chosen
only at the point of highest prior beliefs.

When the number of sensors were less than 5, all 3
algorithm performed similarly but as the number as senors
increased to 10 and then to 15 the GP-UCB consistently
outperforms ”Mean-Only” and ”Variance-Only” by an average



Fig. 3. Average position error of predicted transmitter location (with unit of
10 meter) of GP-UCB , ”Variance only” , GP-BUCB with batch size 2, 3 and
5 across 20 rounds plot in S-BEST setting.

Fig. 4. Average position error of predicted transmitter location (with unit of
10 meter) of GP-UCB . GP-BUCB and GP-AUCB local across 20 rounds plot
in S-BEST setting.

of 27% and 37.7% respectively. Moreover, the ”Variance-
Only” method has a very high confidence interval, as its
selection is unguided in nature and can thus lead to very poor
results occasionally. Clearly GP-UCB outperforms the other
two algorithm for predicting the location of the transmitter.
This clearly shows that GP-UCB is a good technique of using
a mix of exploitation and exploration.

B. Batched Selection Process

1) Accuracy-Round Tradeoff: Figure 3 compares the result
of batched process (GP-BUCB) with the sequential GP-UCB
and ”Variance-Only” method in S-BEST setting. We observe
that GP-BUCB gives similar result for batch sizes of 2,
3 and 5 and performs better than ”Variance only” by an
average of 22.2%.The GP-UCB works well and on average
it outperforms GP-BUCB by 15.7% when used to reduce the
average localisation error. We note that the error consistently
increases with an increase in batch size, which indicates that
reducing latency comes with a cost.

2) Performance of GP-AUCB: Figure 4 compares the result
of all three techniques GP-UCB, GP-AUCB local and GP-
BUCB when best choice from each round of the batched
processes is taken. In this case even though GP-AUCB local
preforms better than GP-BUCB by 9% , it is still not as good

Fig. 5. Average position error of predicted transmitter location (with unit of
10 meter) vs number of rounds plot of GP-BUCB and GP-AUCB local in
S-ALL setting.

Fig. 6. Average position error of predicted transmitter location (with unit
of 10 meter) vs cost of GP-UCB ,GP-BUCB and GP-AUCB local in S-ALL
setting.Here the result is obtained by varying batch size and maximum batch
size of GP-BUCB and GP-AUCB local respectively form 2 to 5 in both the
cases.

as GP-UCB. Moreover, the localization error in case of GP-
AUCB is more stable than GP-BUCB, as GP-BUCB shows
an increase in error when we move from selecting 12 to 13
sensors. This shows that GP-AUCB is able to mitigate the
amount of increase in localization error seen in GP-BUCB,
due to the reduction in number of rounds (and thus amount of
latency). We acknowledge that there is still some amount of
performance gap between GP-UCB and GP-AUCB, indicating
that better algorithms might be possible.

Figure 5 shows when using the entire sensor set form the
batched processes for predicting location of the sensor. For
batch sizes 2, 3 and 5 both the batched process were able to
produce similar prediction performance like GP-UCB and it
took them less than half number of rounds compared to GP-
UCB.

Finally with the help of the cost defined previously in
Section IV.B, we can observe from Figure 6 that GP-UCB
works well in the low cost scenarios. When the cost is
increased for better localisation, in terms of latency GP-AUCB
local performs better than GP-UCB by 33% and in terms
of accuracy GP-AUCB local performs 24% better than GP-
BUCB.



Fig. 7. Comparison of localization accuracy for different density of sensors
in the environment, with a fixed limit of 7 sensors in S-ALL setting.

Fig. 8. Time comparison for different density of sensors in the environment,
with a fixed limit of 7 sensors. Dense represents a case with a total with 500
sensors, standard represents a case with 200 sensors and sparse a case with
50 sensors.

3) Performance with Varying Sensor Density:: Figure 7
shows the average error in localization for varying sensor
density (i.e., number of available sensors in the simulation
environment) with a fixed limit of 7 sensors. Sensor set size
of 50, 200 and 400 chosen for sparse , standard and dense
case respectively. Sparse case provides worst result because of
lack of sensor choice and average proximity from the sensor
from the transmitter. GP-UCB shows a gradual increase in the
performance from moving from spare to standard and standard
to dense by 28% and 26% respectively. Performance of GP-
BUCB and GP-AUCB local is quite similar, but GP-AUCB
local still performs slightly better than GP-BUCB.

4) Scalability: We run all the algorithms on Google Colab,
with a single-core Intel(R) Xeon(R) CPU @ 2.00GHz having
12 GB of RAM. Figure 8 shows the amount of time each
algorithm takes to select 7 sensors, for sparse, standard and
dense sensor density. GP-UCB took the longest in each case
whereas both the batched processes and ”Variance only”
method took similar time. This is because evaluation time
for GP-UCB update rule is higher compared to ”Variance
only” and ”Mean only” method. But both the batched process
evaluate the update rule in parallel which reduces the number
of iterations to find similar number of sensors compared to

GP-UCB.

V. CONCLUSION

In this paper, we showed a technique of sequential selec-
tion of sensors to localize an unauthorized transmitter. We
first showed that sequential sensor selection can outperform
traditional sensor selection techniques, though at the cost of
higher latency. We map this to the Gaussian Process multi-
armed bandit problem, and by leveraging techniques proposed
in existing literature, we utilized the Gaussian Process Upper
Confidence Bound (GP-UCB) to solve it. To reduce the
latency, we then propose to select the sensors in parallel
batches. We first showed that using a simple technique called
Gaussian Process Batched Upper Confidence Bound (GP-
BUCB) leads to substantial increase in localization error. We
thus utilize a more intelligent algorithm called GP-AUCB
(Gaussian Process Adaptive Upper Confidence Bound) Local
to reduce the increase in localization error. We perform large-
scale simulation to validate our approach and show that our
approach scales to large number of sensors.
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