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Rising Threat of Unauthorized

Transmission

Intruder Shanghai wants law on radio spectrum
(Unauthorized transmitter)

C?' '9' 2018 Two Sessions

SHANGHAI delegates at the first session of the 13th National People's Congress in Beijing have called for a national
law on the management of radio spectrum to crack down on its misuse.
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FCC Fines Make, Uses Of Pon-Jammig Devices Thé; Cah‘D.i“sr_upt Cell, GPS Services

[FCC Fines Makers, Users Of Phone-Jamming

Devices That Can Disrupt Cell, GPS Services

If you're thinking of using a phone-jamming device to shut up your fellow

5:08 PM EDT motorists and get them off their phones while driving, think again: the Federal
Communications Commission could hit you with fines, and could fine the
By Mary Beth Quirk company that sold you the gadget as well.
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W G@marybethquirk
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How can we monitor spectrum?
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A Distributed Spectrum

Monitoring System

Spectrum
SeNsors
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L ocation of
Unauthorized
Transmission
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Sensor Selection

Let’s select all the sensors

Limited budget




A optimization problem

Maximum Accuracy of localization is subject to # Sensors
< Budget




How?!ll L

Isn’t it same like multi-arm bandit.

Okay! That make sense

Well each sensor have a fixed probability of
being closest to the transmitter. And with
limited budget we have to identify some of
those sensors which has maximum
probability of being closest to transmitter.




But sensor’s data are not
devoid of noise

........

S, = A4, +N
S, - Received Signal, A, - Actual transmitted Signal, N - Noise
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Intuition for Gaussian process
optimization.

®* We want to find the best fit of our function of finding closest sensors.

® To find this peak, we will fit a Gaussian Process to our observed points and pick our
next best point where we believe the maximum will be.

® This next point is determined by an acquisition function - that tradeoff exploration and
exploitation

® A kernel describes the covariance of the Gaussian process random variables.
Together with the mean function the kernel completely defines a Gaussian process.
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Select few random
sensors and observe
their reading.

Using the observation
mean -> u(x)

Co-variance ->
K(x,.x)

Variance -> g(x)?

| To prepare the covariance function a positive definite kernel known as Matérn
kernel is being used:-

K(x, x*) = (217¥IT(v))r? By(r),
r=(2v%/1)) lIx = x*I
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(Gaussian process sensor selection
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Select few random sensors and observe their
reading.

@

Using the observation
mean -> u(x)
Co-variance -> K (x, x™)
Variance -> o (x)?

9 Is made. y

\ 4

( )

Select sensors sequentially using the rule
xnew
= argmaxy e sensor set(.uprev + z(a)%sev
* O'prev)

Use Bayesian update to obtain new mean
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Exploitation vs. Exploration

Influenced by o
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GP-UCB

Gcart with - \

1. Sensor decision set “D”.
2. Gaussian Process prior mean u,

3. Variance 002
\4' Kernel function K(.,.) /

\/

{Find a new sensor using the rule : - j

f controls the exploration vs.
exploitation set up.

|D|t4m?
B, = 2log 5 ,0 € (0,1)

0.5
= *
Xt = Argmax, c sensor set (u -1 T p t It

\

[Sample = Y observed = fsignalt T errory J

\/

Regret measures No Use Bayesian update to obtain new mean and
loss by not knowing variance

the optimal solution. V

Budget reached?

V Yes

Use acquired sensor set for localization using
Gaussian process regression.
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No

Mean Only

/Start with -

1. Sensor decision set “D”.
2. Gaussian Process prior mean
3. Kernel function K(.,.
< G2 V/

\/

\

{F

iInd @ new sensor using the rule : -
X¢ = Argmaxy e sensor set(Ue=1)

\

[Sample = Yobserved — fsignalt + errory

\/

Use Bayesian update to obtain new mean.

\/

Budget reached?

Yes *

(

Use acquired sensor set for localization using
Gaussian process regression.

J
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Based on
exploitation




No

Variance only

/Start with - \

1. Sensor decision set “D”.
Gaussian Process prior mean p,

2.
3. Variance o}
KA{' Kernel function K(.,.) /

\/

{F

ind a new sensor using the rule : -
Xt = Argmaxy e sensor set(0t)

\

(Sample = Yobserved — fsignalt + errory

\/

Use Bayesian update to obtain variance

\/

Budget reached?

Yes

[

Use acquired sensor set for localization using
Gaussian process regression.

|

17

Based on
exploration




Batched Process

It is possible to select multiple
sensors parallelly in batches Iin
each iteration.
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Feedback

fb:N - {N, 0}
This fd is a mapping such as
fd [t]batschsize=_B = [(t—-1)/BIB
l.e.
([ 0:t €{1,....B}
B:te{B+1,.... 2B}
2B :t e {2B+1,...... 3B}

A

falt]

/ Hallucination \

* |n GP process, Variance will depend
upon the previous sensor which we
have observe not the observed value.

 Mean depend upon the actual
observation.

« Hallucination of observation done by

\using most recent posterior mean. /

No
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Uncertainty Sampling

\

/Start with -
1. Sensor decision set “D”.
2. Gaussian Process prior mean p,
3. Variance oy

Q. Kernel function K(.,.) /

\/

Find a new sensor using the rule : -
Xt = Argmaxye sensor set(0t)

\

[Sample = Yobserved = fsignalt + errory

\/

{ Use Bayesian update to obtain variance

\/

Budget reached?

Yes v

Gaussian prior mean , variance and covariance

Collect the sensor information and using it
made.

|

Budget
= @ - 1)79)|10g(B)?+1




/Start with - \

Sensor decision set “D”.
Gaussian Process prior mean p,

1
2
B controls the exploration vs. 3. Variance g°
exploitation set up. 4. Kernel function K(.,.)

5. Feedback map fd
ID| ¢ 2m- \ J
B— 2oz ,6 € (0,1) |
66
Find a new sensor using the rule : -
Xt = Argmaxy e sensor set (Ut—1 + 181,95 * 0¢)

\/

Fixed Batch Process| , = [Ca'w'a;e: "
(GP-BUCB) N

Yes *

[get - Yo = fs,;gnalt* + erroryfort* € (fd|t] + 1, .....fd[t + 1]) J

\/

[ Perform Bayesian inference to obtain usp(t44;

Budget reached?

v Yes

20 Use acquired sensor set for localization using
Gaussian process regression.

No

J Hallucinated Mean




No

Adaptive Batch Process
(GP-AUCB Local)

Find a new sensor using the rule : -
. 0.5
=W 011 (0 R NRSSNN ) PO pe > * O¢)

\/

( Perform Bayesian inference to obtain o;

\

Budget reached?

* Yes

Use acquired sensor set for localization using
Gaussian process regression.

|

@tart with - \

1. Sensor decision set “D”.

2. Gaussian Process prior mean
1o, Variance og

Constant C

Kernel function K(.,.)

. Feedback map fd

& Maximum batch size B4 /

\

[Set: fdlt*] =0,vt* > 1}

SIPNE

\/

* Yes

Choice of ‘C’ is abstract , it is

there to make sure true posterior

deviation does not become too
small compared to deviation
form hallucinated observation.

Lget = Y+ = Jsignai,. T €rrory for t* € (fd[t] + 1, ....

Fd[t + 1])}
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\/

Perform Bayesian inference to obtain p;_q;

J Posterior Mean

\/

[Set: fdlt*] =t—1,vt* >t }
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Simulation Scenario

Longley rice model —
generated using satellite

Images, transmitter
have 25 — 30 m altitude

200 sensor In
use.

4 Km



How does sequential algorithm compares mean only and variance only

method?

E — Mean Only
g 03> —— Variance Only
S A —— GP-UCB
% 0.30:
"§ \ .
=0.25 :
S
o 0.20
5 Increase by 40%
=
8 0.15; \ Increase by 24%
3 Confidence Inter-vEI
30.10-
~
< 0.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Rounds
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How does batched algorithm fares?

Started out
poorly
GP-AUCB local , maximum batch size:3

GP-BUCB, batch size:3
GP-AUCB local , maximum batch size:5
GP-BUCB, batch size:5
GP-AUCB local , maximum batch size:2
GP-BUCB, batch size:2

N\

1 2 3 4 5 6 7 8 9 10
Number of Rounds

\

Average position error (unit of 10 meter)
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But
converges
quickly.
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Average position error (unit of 10 meter)

0.10-

©
N
o

—
W
U1

-
W
=

—
NJ
U1

O
NJ
=

O
-
)

Cost of operation!!

-  GP-UCB
- (GP-AUCB l|local

— GP-BUCB

24% improveent{

33% improvementL>

8

10
Cost
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-
Average time to select each

NSOor
kse SO

1—1

~X

Cry; =10.3 % i(t?”‘y) + 0.7 x i(tf“l)

1

Time taken to run the Bayesian
\update.

~N

J




How fast are sensors are selected?

B \ariance only
Bl Mean only

o GP-UCB

B GP-BUCB

| B GP-AUCB local

Dense ' Standard
Density

Sparse

27

A total of 7 sensors
were selected.

« Dense : 500 sensors
« Standard : 200 sensors
« Sparse : 50 sensors




Conclusion

®* We showed a technique of sequential selection of sensors to localize an unauthorized transmitter.

®* We first showed that sequential sensor selection can outperform

traditional sensor selection techniques, though at the cost of
higher latency.

®* We map this to the Gaussian Process multi-armed bandit problem, and by leveraging techniques proposed in existing

literature, we utilized the Gaussian Process Upper
Confidence Bound to solve it.

® To reduce the latency, we then
Propose to select the sensors in batches. While this reduces
he accuracy, we mitigate the amount of loss of accuracy by
using an algorithm that adaptively selects the batch sizes.

®* We perform large-scale simulation to validate our approach and
show that our approach scales to large number of sensors.
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