
Minimizing Average Flow-time under Knapsack Constraint

Suman k. Bera∗ Syamantak Das† Amit Kumar†

April 28, 2015

Abstract

We give the first logarithmic approximation for minimizing average flow-time of jobs in the
subset parallel machine setting (also called the restricted assignment setting) under a single
knapsack constraint. In a knapsack constraint setting, each job has a profit, and the set of jobs
which get scheduled must have a total profit of at least a quantity Π. Our result extends the
work of Gupta, Krishnaswamy, Kumar and Segev (APPROX 2009) who considered the special
case where the profit of each job is unity. Our algorithm is based on rounding a natural LP
relaxation for this problem. In fact, we show that one can use techniques based on iterative
rounding.

Keywords: Approximation algorithms, Multiprocessor scheduling, Average flow-time

1 Introduction

Classical scheduling problems that minimize an underlying objective function require that all the
jobs in the input get processed. However, for many applications, one might require only a subset
of the jobs to be scheduled so as to meet a pre-specified hard profit. In this paper, we consider the
well studied objective of minimizing the average flow time of jobs in a multiprocessor environment
under such a hard profit constraint which we call the knapsack constraint. Formally, there is an
associated profit πj with each job. The goal is to schedule a subset of jobs whose sum of profits is
at least a fixed quantity Π. Equivalently, the sum of profit (weights) of the rejected jobs should fit
in a knapsack of size B. Note that the special case where each job has unit profit corresponds to
the problem where there is a lower bound on the number of jobs to be processed.

Charikar et al. [3] initiated the study of this model where there is a lower bound on the number
of jobs which need to be scheduled. Gupta et al. [8] extended this model to a wide variety of
scheduling problems. In particular, they consider the problem of minimizing average flow-time on
identical parallel machines where jobs have unit profit. In this paper, we generalize this result in
two directions as described below.

1.1 Our Results and Techniques

We give the first O(logP)-approximation algorithm for the problem of minimizing average flow-
time of jobs in the restricted assignment setting (each job can only be processed by a subset of
machines) under a single knapsack constraint(FlowKnap). Here P is the ratio of the largest to the

∗Dartmouth College, USA. email: suman.k.bera.gr@dartmouth.edu
†Department of Computer Science and Engg., IIT Delhi. email: {sdas, amitk}@cse.iitd.ac.in

1

smallest job size. Previously, such a result was only known for the parallel machines setting and
when each job had unit profit [8].

Our technique is based on a standard LP relaxations for these problems. Directly working with
such a relaxation turns out to be involved and tricky. Instead, we show that one can often extract
some interesting properties of a fractional solution, and we can write a second simpler LP relaxation
based on these properties. This simpler LP relaxation can then be iteratively rounded.

As has been remarked in [8], the presence of knapsack constraint makes the problem significantly
harder than the non-profit version even in the simple setting of a single machine. In fact, this is
the version we shall consider in greater details and later on show how to extend it to the case of
subset parallel assignments.

As is standard for algorithms for flow-time, we first divide the jobs into classes based on their
sizes pj – a job is of class k if its processing time lies in the range [2k, 2k+1]. Using established
techniques, it turns out that it is enough to get a constant factor approximation for the special
case when all the jobs are of the same class provided our rounding algorithm schedules these jobs
in the same timeslots in which class k jobs were scheduled by the fractional solution (upto some
constant number of slots violations). Thus, we consider the case when all jobs are of roughly the
same size and they are only allowed to be processed in some given region of the timeline. We call
this the Scheduling with Forbidden Regions(ForbidFlow) problem. We first write a time-indexed
LP relaxation for this problem which schedules each job to a fractional extent between 0 and 1.
Given a fractional solution, we perform the following steps:

• We create a modified instance and its corresponding fractional solution by compressing all
the gaps in the LP schedule, i.e., we move the jobs back in time (and decrease their release
dates) to fill all available space. This considerably simplifies the subsequent rounding steps.
Note that in the algorithm of Gupta et al. [8], considerable technical work is required to get
around this problem. The high level reason is that one would want to change the fractional
assignment of jobs such that these become 0 or 1. Naive ways to achieve this may end up
charging to the entire length of the schedule including the gaps in between. So one needs
to do a finer analysis to prevent this. However, once we move the jobs back, this issue goes
away.

• It turns out we can get rid of the time-indexed LP relaxation, and just work with the fraction
to which a job is processed. We write a simpler LP relaxation to capture this and show that
it can be rounded using iterative rounding.

• Finally, we show how to expand this schedule to obey the earlier release dates without incurring
much in the flow-time.

The analysis essentially shows that we do not incur a lot of cost compared to LP in each of these
steps.

1.2 Related Work

Scheduling jobs on machines subject to various constraints is one of the central problems in com-
binatorial optimization. See [9, 11] for earlier work on the problems of minimizing makespan and
GAP in multiple machines environment. Garg and Kumar [5, 6] gave upper and lower bounds for
minimizing average flow-time of jobs under various settings.

More recently, there has been a growing interest in the study of scheduling with rejections. Sev-
eral works ([1, 4, 2]) have studied the prize collecting model where one has to pay a penalty for

2

the jobs that are rejected. On the other hand, Charikar et al. [3] considered scheduling under the
knapsack constraint where the objective is to schedule jobs so as to achieve a target profit. Guha
et al. [7] presented an LP rounding based algorithm for minimizing average completion-time with
outliers where the outlier constraint is violated by a constant factor. Gupta et al. [8] gave approxi-
mation algorithms for scheduling with outliers under various settings. They give a constant factor
approximation for GAP under the knapsack constraint(approximation factor improved by Saha and
Srinivasan [10]), an O(log k) approximation for average completion time on unrelated machines
minimization under k knapsack constraints and a logarithmic approximation for minimizing to-
tal(average) flow time of jobs on identical parallel machines under knapsack constraint where each
job has unit profit.

2 Preliminaries

In this section, we formally describe the scheduling problems that will be considered in this paper.
We will be given a set of jobs J and a set of machines M . In the subset parallel machines setting,
each job j specifies a subset Sj of machines on which it can be processed and its processing time
on these machines is pj . Recall that in the knapsack constraint, each job j also comes with a profit
πj , and we are given a lower bound Π. Given a release date rj for each job j, The flow-time of a
j is the difference between its completion time and release date. The goal is to schedule a subset
of jobs of total profit at least Π while minimizing the total flow-time of scheduled jobs. We allow
jobs to be pre-empted but we do not allow migration across machines. However, our approximation
ratio holds with respect to a migratory optimum as well.

We need to solve a related problem, which we call scheduling with forbidden regions(ForbidFlow).
Here, we are given a single machine, and the setting is same as minimizing total flow-time with
knapsack constraint. Further, all processing times are within a factor of 2 of each other. We are also
given a quantity z(t) for each timeslot [t, t+1]. Any schedule can only use 1−z(t) amount of space
in this timeslot. In Section 3, we give an O(1)-approximation algorithm with an additive

∑
t z(t)

factor for this problem. We use this result as a subroutine for the FlowKnap problem (Section 4).

3 Scheduling with Forbidden Regions on a Single Machine

In this section, we give an approximation algorithm for the ForbidFlow problem. An instance
I = ForbidFlow(J,Q,Π, z) is similar to an instance of FlowKnap – each job j ∈ J has associated
parameters rj , pj and πj as before while Π is a hard profit. Processing times of the jobs are bounded
in a range [Q, 2Q] for some positive integer Q,Q ≥ 1. Let T be a guess for the time at which the
optimal solution completes processing all jobs. Moreover, z is a vector in [0, 1]T . In any time slot
[t, t+1], the schedule can do at most 1− zt amount of processing. For a time slot t we refer to the
quantity zt as forbidden space while the rest is called available space. We write the following LP
relaxation for this problem. Here xjt refers to the amount of processing of job j done during the
timeslot [t, t+1]. This variable is defined only for t ≥ rj . For a job j, yj refers to the fraction of job
j which gets processed. It is well-known that the objective function is a lower bound on the value
of the flow-time of the corresponding schedule [5]. The first term in the objective function refers
to fractional flow-time and the second term refers to half of the processing time of the schedule.
Constraint (1) states that a job should be processed to the extent of pj if yj is 1. Constraint (2)
says that a timeslot [t, t+ 1] can only be used to the extent of 1− zt. Finally, constraint (3) states

3

that the total profit of jobs selected for processing must be at least Π. Thus, this is a relaxation
for the ForbidFlow problem.

min

n∑
j=1

∑
t

xjt(t− rj)

2Q
+

1

2

∑
j

yjpj (LP1)

∑
t≥rj

xjt = yjpj , ∀j (1)

n∑
j=1

xjt ≤ 1− zt, ∀t (2)

n∑
j=1

yjπj ≥ Π (3)

0 ≤ yj ≤ 1, ∀j (4)

Let (x⋆, y⋆) be an optimal solution to LP1 and flow(x⋆, y⋆) denote the LP objective. We state
the main theorem of this section.

Theorem 3.1. There is a polynomial time algorithm to schedule jobs of total profit at least Π such
that total flow-time of the scheduled jobs is at most O(flow(x⋆, y⋆) +

∑
t zt).

3.1 The Rounding Algorithm

Our algorithm will only use the y⋆j variables – this is so because of the following lemma.

Lemma 3.2. Let j1, . . . , jn be an ordering of the input jobs according to increasing release dates.
There is an optimal solution to LP1 which processes the jobs in the order j1, . . . , jn. Hence, the
solution does not cause any pre-emption, and can be described by just specifying the yj values.

Proof. Consider an optimal solution. For a timeslot [t, t+ 1], let u(t) denote
∑

j xjt, i.e., the total
processing done by the solution in this timeslot. It is easy to see that the objective function is
equal to ∑

t

u(t)t

2Q
−

∑
j

rjyjpj
2Q

+
1

2

∑
j

yjpj .

Therefore, if we reorder the jobs processed in this solution in any manner, the value of the objective
will remain unchanged as long as we use only u(t) amount of volume in the slot [t, t+1]. It is easy
to see that processing the jobs in the order j1, . . . , jn where ji is processed to a fraction of yji will
respect the release dates as well, and hence, this will be an optimal solution as well.

The lemma above implies that, given y⋆j values, we can deduce the x⋆jt values. We now describe
the details of each of the conceptual steps of our algorithm:
Closing the gaps: Given the instance I and the solution (x⋆, y⋆), our first step is to create a new
instance I ′ and a corresponding fractional solution (x̄, ȳ). The idea is that in the solution (x⋆, y⋆)
there may be gaps in the fractional schedule – a gap is unused timeslot which appears in the middle
of a schedule. The reason why we cannot process a job during the gap is that all subsequent jobs

4

CloseGaps :

1. Initialize ȳj = 0 for all j and x̄jt = 0 for all j, t.
2. For l = 1, 2, . . . , n

Let tl be the first time such that z(tl) +
∑l−1

s=1 x̄jstl < 1
(i.e., there is some more processing which can be done at this

time slot)
In the instance I ′, define s̄jl = tl.
Process the job jl to an extent of y⋆jl from time tl onwards, i.e.,

for t = tl, set x̄jt = min(1− zt −
∑l−1

s=1 x̄jst, pjy
⋆
j) and

for t > tl, iteratively set x̄jt = max(0,min(1 − zt, pjy
⋆
j −∑

t′<t x̄jt)).
Set ȳjl = y⋆jl , r̄j = rj − (s⋆j − s̄j).

Figure 1: Algorithm for modifying I to I ′

have release dates beyond this timeslot. In I ′ we would like to move jobs to the left so that these
gaps go away. I ′ will be identical to I except that the release date of a job in I ′ will appear before
that in I.

We give some notation first. Let j1, . . . , jn be an ordering of the input jobs according to
increasing release dates. For a job j, let s⋆j , the starting time of j, denote the first timeslot [t, t+1]
in which the solution (x⋆, y⋆) processes j, i.e., the smallest t such that x⋆jt > 0 – we can assume that
y⋆j > 0 for all jobs j because we may not consider any job for which y⋆j = 0. When we construct I ′,
r̄j will denote the release date of job j in this instance, and s̄j will denote the first timeslot [t, t+1]
for which x̄jt > 0. We iteratively modify the instance I to I ′ and construct a fractional schedule
simultaneously. The procedure is described in Fig. 1. It essentially moves each job back so that all
gaps get filled. The starting time of the job moves back accordingly. The release dates also move
back by the same amount as the starting time. It is not difficult to see that the relative ordering
of the release dates in I ′ are same as that in I.

Since we are only moving the processing of a job back in time, it is easy to prove by induction
that for each job j, s̄j ≤ s⋆j and so, r̄j ≤ rj . For indices t1 < t2, let avail(t1, t2) denote the total

available space in the timeslots [t1, t1 + 1], . . . , [t2, t2 + 1], i.e.,
∑t2

t=t1
(1 − zt). Let forbid(t1, t2)

be the total forbidden space in the corresponding timeslots, i.e.,
∑t2

t=t1
zt. Clearly, avail(t1, t2) +

forbid(t1, t2) = t2 − t1 + 1.
We note one simple fact which will be useful later. Again, the reason why this is true is because

in (x⋆, y⋆), we could have had gaps between the execution of two jobs j and j′, but these will not
be present in (x̄, ȳ).

Claim 3.3. Let j, j′ be jobs with rj ≤ rj′. Then avail[s⋆j , s
⋆
j′] ≥ avail[s̄j , s̄j′].

The first observation is that the cost of the solution (x̄, ȳ) is close to that of (x⋆, y⋆).

Lemma 3.4. ∑
j,t

x̄jt(t− r̄j)

2Q
≤

∑
j,t

x⋆jt(t− rj)

2Q
+

∑
t

zt +
∑
j

y⋆j pj .

5

Proof. Let C̄j be the completion time of j in the schedule (x̄, ȳ). For a job j, we will show that

∑
t≥s̄j

x̄jt(t− s̄j)

2Q
≤

∑
t≥s⋆j

x⋆jt(t− s⋆j)

2Q
+

C̄j∑
t=s̄j+1

zt + y⋆j pj(5)

For the sake of argument, we divide the processing of job j into very small pieces such that each
piece “fits” in one timeslot. More formally, suppose ε is a small enough positive quantity such
that all positive x⋆jt and x̄jt values are integral multiples of ε. We can think of Nj =

yjpj
ε such

contiguous pieces of j, which get processed in both schedules in this order. Now, such a piece c

getting processed at time t in x⋆ will contribute
ε(t−rj)

2Q to the sum
∑

t≥s⋆j

x⋆
jt(t−s⋆j)

2Q . We claim that

this piece will finish processing in the schedule (x̄, ȳ) by time t′ = s̄j+1+(t−s⋆j)+forbid(s̄j+1, C̄j).

Indeed, if t′ ≥ C̄j , then there is nothing to prove because by definition of C̄j , j will finish by C̄j ≤ t′.
So assume t′ < C̄j . Now, forbid(s̄j + 1, t′) is at most forbid(s̄j + 1, C̄j). So,

avail(s̄j + 1, t′) ≥ t′ − s̄j − forbid(s̄j + 1, C̄j) ≥ t− s⋆j + 1.

But then the piece c should finish processing by time t′ in (x̄, ȳ) because the total processing
requirement of pieces of j coming before c (including c) is at most t − s⋆j + 1. Thus, this piece

will contribute at most
ε(1+(t−s⋆j)+forbid(s̄j+1,C̄j))

2Q to the sum
∑

t≥s̄j

x̄jt(t−s̄j)
2Q . Summing over all the

pieces of j, we get

∑
t≥s̄j

x̄jt(t− s̄j)

2Q
≤

∑
t≥s⋆j

x⋆jt(1 + (t− s⋆j) + forbid(s̄j + 1, C̄j))

2Q

≤
∑
t≥s⋆j

x⋆jt(t− s⋆j)

2Q
+ y⋆j pj + forbid(s̄j + 1, C̄j),

because pj ≥ 1 and
∑

t x
⋆
jt = y⋆j pj ≤ 2y⋆jQ. This proves inequality (5). Summing this over all jobs

and noting that the closed intervals [s̄j + 1, C̄j] are disjoint for different jobs, we get

∑
j,t

x̄jt(t− s̄j)

2Q
≤

∑
j,t

x⋆jt(t− s⋆j)

2Q
+

∑
t

zt +
∑
j

y⋆j pj .(6)

This implies the desired result because

∑
j,t

x̄jt(t− r̄j)

2Q
−

∑
j,t

x⋆jt(t− rj)

2Q

=
∑
j,t

x̄jt(t− s̄j)

2Q
+

∑
j,t

x̄jt(s̄j − r̄j)

2Q
−
∑
j,t

x⋆jt(t− rj)

2Q
−

∑
j,t

x⋆jt(rj − s⋆j)

2Q

=
∑
j,t

x̄jt(t− s̄j)

2Q
−

∑
j,t

x⋆jt(t− s⋆j)

2Q

because rj − s⋆j = r̄j − s̄j and
∑

j,t x̄j,t = ȳj = y⋆j =
∑

j,t x
⋆
j,t.

6

Iterative Rounding: Now we show how to round the solution (x̄, ȳ) for the instance I ′. Again, our
rounding algorithm will only use the ȳ values. We achieve this by an iterative rounding procedure
which works with a simple LP relaxation – this simpler LP relaxation only looks at the ȳj values.
We first motivate the new LP relaxation. It is not hard to see that the objective function for
the solution (x̄, ȳ) can be written as

∑
t
tu(t)
2Q −

∑
j
r̄j ȳjpj
2Q + 1

2

∑
j pj ȳj , where u(t) is the amount of

processing done in timeslot [t, t+1]. It will turn out that the quantity u(t) will not change. Hence,
we can treat the objective function as −

∑
j
r̄j ȳjpj
2Q + 1

2

∑
j pj ȳj .

Our algorithm will iteratively reject or select some jobs. Hence, at any point of time during our
algorithm, we will work with a residual budget Π′ – this is the remaining profit we need to recover
from jobs for which we have not made a decision. Our algorithm will also maintain a set of jobs J ′

initialized to the set of all jobs. These will be the set of jobs about which our algorithm has not
decided whether they will be scheduled or not. For a set of jobs J ′, let F (J ′) be the first three jobs
in J ′ (according to release dates).

Given jobs j, j′ we say that j ≺ j′ if r̄j ≤ r̄j′ . For a job j, let V̄j denote the amount of processing
done by the solution (x̄, ȳ) on jobs released before j (including j), i.e., V̄j =

∑
j′:j′≺j

∑
t x̄j′t =∑

j′:j′≺j ȳj′pj′ . Our new LP relaxation is shown below.

min−
∑
j∈J ′

pjyj r̄j
2Q

+
1

2

∑
j∈J ′

yjpj (LP2)

∑
j∈J ′

yjπj = Π′ (7)

∑
j′∈J ′:j≺j′

yj′pj′ = Vj ∀j ∈ J ′ − F (J ′) (8)

0 ≤ yj ≤ 1 ∀j ∈ J ′ (9)

Constraint (7) ensures the total profit remains unchanged. Constraints (8) imposes that total
volume of scheduled jobs which come before j remain restricted to a certain volume Vj (which will
be initially V̄j). We write these constraints for j ∈ J ′ − F (J ′).

IterRound:

1. Initialize J ′ ← J , Vj ← V̄j for all jobs j. Set S = ∅, Π′ = Π.
2. While |J ′| > 3

(i) Find a vertex solution y to LP2.
(ii) If there is a job j ∈ F (J ′) with yj = 0, set J ′ ← J ′ r {j}.
(iii) Else if there is a job j ∈ F (J ′) with yj = 1, set S ← S ∪ {j}

and
a. J ′ ← J ′ r {j}.
b. Π′ ← Π′ − πj .
c. ∀j′, j ≺ j′, j′ ∈ J ′, Vj′ ← Vj′ − pj .

3. S ← S ∪ J ′

4. Return S.

Figure 2: Algorithm for rounding LP relaxation for I ′

Now we present the iterative rounding algorithm for converting the fractional schedule into an

7

integral one (Algorithm IterRound). Note that the LP relaxation does not write the constraints (8)
for the first three jobs in J ′. This will ensure that a vertex solution will have at least one variable
which is 0 or 1. In the end, we shall return the jobs which were added to the set S and the remaining
three jobs in J ′. This is the set of jobs chosen by our algorithm. We will prove that either step 2(ii)
or step 2(iii) will be executed in each iteration of this algorithm. Let S be the set of jobs returned
by the above algorithm. Finally, we show how to schedule these jobs feasibly with respect to the
original release dates.

We first show that the iterative rounding algorithm will terminate.

Lemma 3.5. Consider a vertex solution y to (LP2). Assuming |J ′| ≥ 4, there exists a job j ∈ F (J ′)
for which yj is 0 or 1.

Proof. Suppose not. Let j4 be the fourth job (according to release date) in J ′. Note that con-
straints (8) is written for j4 and jobs released after j4. By subtracting the constraint for all jobs
j′ released after j4 from the constraint for job j4, we get an equivalent LP. However, in this LP,
the variables yj1 , yj2 , yj3 , where j1, j2, j3 are the first three jobs in J ′, appear in only two tight
constraints – constraint (8) for j4 and constraint (7).

We give some more notations. We index the iterations of the while loop in the algorithm
starting from n downwards. Thus, at the beginning of iteration k, |J ′| = k. Let LP2(k) denote the
corresponding LP, and y(k) be the vertex solution found by the Algorithm IterRound for this LP.
So the first iteration finds the solution y(n), then y(n−1) and so on till y(4). Let y(3) be a vertex
solution to LP2(3) when |J ′| is 3 (and Vj ,Π

′ values are given by the end of iteration indexed 4) –
even though our algorithm will not use this LP solution, it will be useful for analysis. Again, let

V
(k)
j and Π(k) to be the values of Vj and Π′ when |J ′| = k. Let S(k) be the set S when |J ′| = k. So,

S(n) is ∅.
We now give a procedure which given values yj for all jobs j ∈ J , outputs a corresponding

schedule xjt. This is similar to the algorithm in Figure 1. The procedure arranges the jobs in
ascending order of release dates and schedules them in this order. The procedure is described in
Figure 3. Note that the schedule itself does not care about the release dates of the jobs and so may
not even respect the release dates.

Given the solution y(k) for a subset of jobs J ′, we extend it to the set of all jobs in J by setting

y
(k)
j = 1 for all j ∈ S(k), and 0 for jobs in J − J ′ − S(k). We shall call this the extended solution

y(k). Let x(k) be the corresponding schedule of these jobs given by calling ScheduleJobs on the
extended solution y(k). We shall use flow(x(k), y(k)) to denote the objective function value if we
view this as a solution to (LP1) with respect to release dates r̄, i.e.,

flow(x(k), y(k)) =
∑
j

∑
t

x
(k)
jt (t− r̄j)

2Q
+

1

2

∑
j

y
(k)
j pj .

Lemma 3.6. The extended solution y(k) is feasible to (LP2) during every iteration k of the algo-
rithm IterRound. Further, each of these solutions processes jobs of total volume

∑
j ȳjpj , and

flow(x(3), y(3)) ≤ flow(x̄, ȳ).

8

ScheduleJobs :

Input : Values yj ∈ [0, 1] for all jobs j ∈ J .
Output : A schedule of the jobs x̄jt, such that

∑
t x̄jt = yj .

1. For l = 1, 2, . . . , n
Let tl be the first time such that z(tl) +

∑l−1
s=1 x̄jstl < 1

(i.e., there is some more processing which can be done at
this time slot)

Process the job jl to an extent of yjl from time tl onwards,
i.e.,

for t = tl, set x̄jlt = 1− zt −
∑l−1

s=1 x̄jstl and
for t > tl, iteratively set x̄jlt = max(0,min(1 − zt, pjly

⋆
jl
−∑

t′<t x̄jlt′)).

Figure 3: Algorithm for building schedule from a solution y

Proof. Clearly, ȳ is a feasible solution to LP2(n). Hence, LP2(n) has non-empty set of feasible
solutions, and y(n) is well-defined. Assume (by induction) that LP2(k) has a non-empty set of
feasible solutions, and hence y(k) is well-defined. Given the solution y(k), suppose we select a job j

with y
(k)
j = 1 in iteration k (the other case is similar). It is easy to see that y(k) is also a feasible

solution to LP2(k − 1) in the next iteration if we do not consider the variables corresponding to
j. Further, the constraint (8) for the last job (according to release date) ensures that the total
volume of the processed jobs in the solution y(k−1) is same as that in the solution (x(k), y(k)) minus
pj . Hence, if we consider the extended solution y(k−1) to all the jobs, then the volume processed
by it does not change.

Since all the solutions y(k) process the same amount of volume, and do not have any gaps, they
will occupy each slot to the same extent. So

flow(x(k), y(k)) =
∑
t

u(t)t

2Q
−

∑
j

r̄jy
(k)
j pj

2Q
+

1

2

∑
j

y
(k)
j pj .

The quantity u(t) denotes the amount of processing done in [t, t+1], and will not depend on k. Since
LP2 treats the other terms above in the objective, it is easy to show that flow(x(k−1), y(k−1)) ≤
flow(x(k), y(k)).

We now consider the schedule corresponding to S. Define a solution ỹ as ỹj = 1 iff j ∈ S. Let
(x̃, ỹ) be the corresponding schedule obtained by calling ScheduleJobs on ỹ.

Lemma 3.7. For the schedule (x̃, ỹ),

flow(x̃, ỹ) ≤ flow(x̄, ȳ) + 12
∑
j

ȳjpj + 6
∑
t

zt.

Proof. The schedule for S is obtained from (x(3), y(3)) by adding 3 jobs in the beginning. This will
require shifting the jobs scheduled in (x(3), y(3)) to the right by at most 6Q amount of available
space so that these 3 jobs can be accommodated. The processing time of these 3 jobs is at most

9

6Q. Now, if we look at any timeslot [t, t+ 1], the number of alive jobs at this time can increase by
at most 6 (because these many new jobs which were being processed before t could now be getting
processed after t). Hence the increase in flow-time is at most 6 times the makespan of the schedule,
which is at most 6 times

∑
t zt plus the total processing volume. Assuming that there are at least 4

jobs in optimal solution (otherwise we could just enumerate), this would mean that the processing
time of the 3 new jobs can be charged to the processing volume of (x(3), y(3)). This proves the
desired result.

Corollary 3.8. The total profit of the jobs S returned by the algorithm IterRound is at least Π.

Proof. We prove by induction on k that the total profit of the jobs in S − S(k) is at least Π(k).
Base case is k = 3. We know that there is a feasible solution to (LP2) when there are just 3 jobs
remaining in J ′ (Lemma 3.6). In this fractional solution, we get a profit of at least Π(3). Our
algorithm picks all the three jobs and hence its profit must be at least Π(3) as well. Assuming that
this is true for some k, it is easy to see that the statement holds true for k − 1 as well (we are
updating Π(k) accordingly). When k = n, S(k) is ∅, and so we are done.

Lemma 3.9. For a job j ∈ J , let p(S≺j) be the total processing time of jobs in S which are released
before j. Then p(S≺j) lies in the interval [V̄j − 6Q, V̄j + 6Q].

Proof. Consider the first iteration of LP2 when j is among the first 3 jobs of J ′ – say this is iteration
k. So far, we have chosen a set of jobs S(k). Since we are always writing the constraint (8) for j, we

know that V
(k)
j = V̄j − p(S(k)). Since there is a feasible solution to this LP (Lemma 3.6), we know

that V
(k)
j ≥ 0, and so the jobs selected in S have processing time at least V̄j − V

(k)
j . But now V

(k)
j

involves just 3 jobs, and so it cannot be larger than 6Q. This proves the lower bound on p(S≺j).
The upper bound follows similarly – the only eligible jobs in p(S≺j) are either those in S(k) or the
first three jobs of this iteration.

Corollary 3.10. Let j, j′ be jobs in J , j ≺ j′. Let Sj,j′ be the of jobs in S which lie between j and
j′ (excluding j and j′) with respect to the order ≺. Then p(Sj,j′) ≤ 12Q+

∑
j′′:j≺j′′≺j′ pj′′y

⋆
j′′ .

Using the above lemma, we now show that it is possible to modify the solution (x̃, ỹ) such that
it obeys the release dates r̄j for the jobs. But we will not need such a result in our analysis because
we can directly use the above result. We now give proofs for the final schedule constructed by our
algorithm.
Opening the gaps: Recall that (x̃, ỹ) is the schedule obtained for S where we just start from the
beginning and fill available space without looking at the release dates (Figure 3). As a final step in
our algorithm, we convert this into a feasible schedule that respects all release dates. We consider
these jobs in the ascending order of release dates rj (which is same as the ordering with respect to
r̄). We schedule j in the earliest available slots after rj .

Let Ĉj be the completion time of job j ∈ S in the final schedule. We need to account for∑
j∈S(Ĉj − r⋆j). We split this sum into two parts and give bounds on them separately.

Lemma 3.11. ∑
j∈S

(s⋆j − r⋆j) ≤ 8flow(x̃, ỹ) + 7
∑
t

zt.

10

Proof. Note that s⋆j − r⋆j = s̄j − r̄j . Thus, it is enough to consider the sum
∑

j∈S(s̄j − r̄j). Fix
a job j. Let s̃j be the first slot in which it gets processed in (x̃, ỹ). Clearly, the cost of (x̃, ỹ) is
at least

∑
j∈S(s̃j − r̄j), because all of job j gets processed after time s̃j in this solution, and so,

even the fractional flow-time is at least s̃j − r̄j . It remains to consider
∑

j∈S(s̄j − s̃j). We estimate
this sum as follows. Fix a time t during the schedule. We bound how many intervals [s̃j , s̄j] can
contain t. Let J̃ be the set of jobs in S for which the interval [s̃j , s̄j] contains t. Suppose, for the
sake of contradiction, that |J̃ | ≥ 7. Since the available space between the starting time of any two
consecutive jobs in (x̃, ỹ) is at least Q (because it needs to process one job), the available space
between s̃jf and s̄jf is at least 7Q. But then the difference between V̄jf and p(S≺jf) is at least 7Q,
which contradicts Lemma 3.9. So,

∑
j∈S(s̄j − s̃j) is at most 7 times the makespan of (x̃, ỹ), which

is at most 7 times flow(x̃, ỹ) +
∑

t z(t).

Lemma 3.12. ∑
j∈S

(Ĉj − s⋆j) ≤ 14flow(x̃, ỹ) + 14
∑
t

zt.

Lemma 3.12. Consider the intervals [s⋆j , Ĉj]. We claim that a fixed time t can be contained in

at most a constant number of such intervals. Let us see why. Let J̃ be the jobs for which the
corresponding interval contains t. Let jl be the last job in this set. Now, let ju be the first job such
that there is no gap during the execution of ju till jl in the final schedule. So, all of processing of
jobs in the range ju, . . . , jl is done after ju. Also, this sequence contains all the jobs in J̃ (because
at time t they are all alive). Now note that the processing time of jobs in this set is at least
avail[s⋆ju , s

⋆
jl
] + p(J̃) − 2Q – indeed, the jobs in the range ju, . . . , jl get processed from r⋆ju ≤ s⋆ju

till Ĉjl , avail[s
⋆
ju
, Ĉjl] ≥ avail[s⋆ju , s

⋆
jl
] + avail[t, Ĉjl], and we process at least |J̃ | − 1 jobs in the

latter interval. Claim 3.3 and Corollary 3.10 now imply that the total processing time of the jobs
in ju, . . . , jl is at most 12Q + avail[s⋆ju , s

⋆
jl
]. This implies that p(J̃) ≤ 14Q, and hence |J̃ | ≤ 14.

This proves the desired result.

Combining Lemma 3.11, Lemma 3.12, Lemma 3.7 and Lemma 3.4, we get Theorem 3.1.

4 Flow Time Minimization on Multiple Machines Under Knap-
sack Constraint

We use our algorithm for ForbidFlow to design an algorithm for Flowknap in the subset parallel
setting. Recall that each job has a release date rj , a processing requirement pj and a profit πj
while a target profit Π has to be attained by the scheduled jobs. The machines are identical, but
a job can go only to a subset of machines Sj . The objective is to minimize total flow time of the
scheduled jobs. The proof of the following theorem can be found in full version of the paper.

Theorem 4.1. There is a polynomial time O(logP)-approximation algorithm for Flowknap in the
subset parallel setting under a single knapsack constraint. Here, P is the ratio between largest and
the smallest processing time of a job.

We write a natural LP relaxation for this problem, which is an extension of the LP relaxation
used in [6]. We divide jobs into classes – a job is of class k if its processing time lies in the interval
[2k−1, 2k). Our algorithm runs over several iterations – in each iteration it schedules jobs of a

11

particular class, say class k. Using the optimal solution to the LP relaxation, we figure out the
extent to which each timeslot processes jobs of class k. We now use the ForbidFlow algorithm to
schedule jobs of class k where we are allowed to use a timeslot to this extent only. Combining the
solutions for all classes gives Theorem 4.1.
LP Relaxation We write the following LP relaxation for this problem. It is identical to the LP
relaxation used in [6], with the additional constraint (12) which states the knapsack constraint.
Also note that the quantity T is a guess for a suitable upper bound for the time at which the
optimal solution completes processing of all jobs. In the LP relaxation below, p̃j refers to the
smallest power of 2 which is at least pj .

min
n∑

j=1

m∑
i=1

T∑
t=0

(
xijt
p̃j

(
t+

1

2
− rj

)
+

xijt
2

)
(LPFlowKnap)

subject to

pjyj =
m∑
i=1

T∑
t=0

xijt, for all j (10)

n∑
j=1

xijt ≤ 1, for all t, i (11)

n∑
j=1

yjwj ≥ Π (12)

xijt = 0, if rj < t or i /∈ Sj (13)

0 ≤ xijt, yj ≤ 1, for all j, t (14)

The following fact is well-known(see e.g., [5]).

Lemma 4.2. The above LP is a valid relaxation for Flowknap in the subset parallel machines
setting with a knapsack constraint.

As is standard for such problems, we first divide the jobs into various classes C1, C2, . . . CL,
where L = logP . A job j belongs to class Ck if pj ∈ [2k−1, 2k). Clearly for all jobs j of the same
class, p̃j is same.

Rounding Algorithm for Flow Time With Knapsack Constraints: Let (x⋆, y⋆) be an opti-
mal solution to LPFlowKnap. Our algorithm proceeds in L iterations. We introduce some notations
first. Denote the solution restricted to jobs in Ck as (x⋆k, y

⋆
k). At the kth iteration, we start with

(x⋆k, y
⋆
k) and work with the jobs in Ck. Note that the fractional solution may schedule portions of

a job j ∈ Ck on different machines in parallel up to a total extent of yjpj . We rearrange them so
that the entire yjpj volume is processed on only one machine in Sj . This is carried out by invoking
the unsplittable flow formulation deployed in [6] – we refer to this as the GK algorithm. This results
in different machines processing disjoint sets of jobs in the new solution. At this point, we use
ForbidFlow as a subroutine on each of the machines. For each slot, forbidden regions are defined
to be regions that are occupied by jobs that do not belong to Ck. The total target profit is set to be
the fractional profit which comes from Ck in the solution (x⋆k, y

⋆
k). Fig. 4 formalizes the description.

Analysis

12

kth Class:

Input: Solution (x⋆k, y
⋆
k)

Output: Solution (xk, yk) and a schedule for selected jobs in Ck

1. Initialize xk ← x⋆k, y
k ← y⋆k.

2. Run GK algorithm on (xk, yk). Let the new solution be (x′, y′).
3. For each machine i do

For time t = 0, 1, . . . , T
zi(t) =

∑
j∈Ck′ ,k

′ ̸=k x
′
ijt

Set J ← {j : j ∈ Ck,
∑

t x
′
ijt > 0}, Q← 2k , Π←

∑
j∈J y

′
jπj

Let (x̃, ỹ) be a solution to ForbidFlow(J,Q,Π, zi)
For t = 0, 1, . . . , T and each j ∈ J

Set xkijt ← x̃ijt, y
k
j ← ỹ .

Figure 4: kth iteration of the rounding algorithm for FlowKnap

We prove the following lemma which in turn will lead to a proof of Theorem 4.1

Lemma 4.3. flow(xk, yk) 6 O(flow(x⋆k, y⋆k) + U) where U is the total processing time of all jobs
in the system. Further, total profit of scheduled jobs is at least

∑
j∈Ck

y⋆jπj

Proof. The increase in LP value due to GK algorithm can be accounted for by using the following
Claim 4.3 from [6].

Claim 4.4. flow(x′, y′) 6 flow(x⋆k, y
⋆
k) + U

However it should be noted that we use a slightly modified version of the GK where demand
of each job is yjpj . It is not hard to see that the Claim 4.4 extends to this modified instance as
well. Now consider the ForbidFlow step in the above algorithm for a particular machine i. It is
easy to see that (x′, y′) forms a feasible solution to the LP relaxation of the ForbidFlow instance.
Recall that by virtue of GK algorithm, each machine processes disjoint sets of jobs in solution (x′, y′).
Denote Zk

i =
∑

t zi(t) for the kth iteration. Then from Theorem 3.1 and the above claim, for jobs
restricted to those being processed on i, flow(xk, yk) 6 O(flow(x⋆k, y⋆k) +Zk

i). We sum up over all
machines to obtain:

flow(xk, yk) 6 O(flow(x⋆k, y⋆k) +
∑
i

Zk
i) 6 O(flow(x⋆k−1, y

⋆
k−1) + U)

Further, from Section 3, we know that ForbidFlow schedules enough jobs to meet the profit re-
quirement of B on a particular machine. Again summing over all machines proves the lemma.

Proof. (Theorem 4.1) Recall that we run Algorithm kth Class for each of the L classes. Denote
the final solution by (xf , yf). Using Lemma 4.3 and adding up for components of each class, we
have

flow(xf , yf) 6
L∑

k=1

O(flow(x⋆k, y⋆k) + U) 6 O(flow(x⋆, y⋆) + L · U)

13

Arguments similar to [6] show that integral flow-time for the final schedule Sf is upper bounded by
flow(xf , yf) +O(L · U). Combining all above, flow time of Sf is at most O(flow(x⋆, y⋆) + L · U).
Using lower bounds flow(x⋆, y⋆) and U for OPT , we have flow time of Sf to be at most O(1 +
logP)OPT .

Acknowledgements

The second author would like to thank Tata Consultancy Services Research Scholar Program for
supporting the work.

References

[1] Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Kedar Dhamdhere. Scheduling for flow-time
with admission control. In Proc. ESA, 2003.

[2] Yair Bartal, Stefano Leonardi, Alberto Marchetti-Spaccamela, Jǐŕı Sgall, and Leen Stougie.
Multiprocessor scheduling with rejection. In Proc. ACM-SIAM SODA, 1996.

[3] Moses Charikar and Samir Khuller. A robust maximum completion time measure for scheduling.
In Proc. ACM-SIAM SODA, 2006.

[4] Daniel W. Engels, David R. Karger, Stavros G. Kolliopoulos, Sudipta Sengupta, R. N. Uma,
and Joel Wein. Techniques for scheduling with rejection. In Proc. ESA, 1998.

[5] Naveen Garg and Amit Kumar. Better algorithms for minimizing average flow-time on related
machines. In Proc. ICALP - Volume Part I, 2006.

[6] Naveen Garg and Amit Kumar. Minimizing average flow-time: Upper and lower bounds. In
Proc. IEEE FOCS, 2007.

[7] Sudipto Guha and Kamesh Munagala. Model-driven optimization using adaptive probes. In
Proc. ACM-SIAM SODA, 2007.

[8] Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Danny Segev. Scheduling with
outliers. In Proc. APPROX/RANDOM, 2009.

[9] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for scheduling unre-
lated parallel machines. Math. Program., 1990.

[10] Barna Saha and Arvind Srinivasan. A new approximation technique for resource-allocation
problems. In Proc. ICS, 2010.

[11] David B. Shmoys and Éva Tardos. Scheduling unrelated machines with costs. In Proc. ACM-
SIAM SODA, 1993.

14

