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Abstract

There is evidence to support the claim that speed-
breakers can cause accidents and injury. When a vehicle
approaches a speed-breaker at a speed greater than some
threshold velocity, the risk of accident or injury is sub-
stantial. Speed-breakers are inconspicuous in low visi-
bility conditions, like at night, or when there is fog, rain
or snow. This problem is particularly acute in developing
countries where speed-breakers don’t always accompany
warning signs. We propose an early warning system that
uses a smartphone based application to alert the driver
in advance when the vehicle is approaching a speed-
breaker. In addition, the application constantly moni-
tors the smartphone accelerometer to detect previously
unknown speed-breakers. The proposed detection algo-
rithm is easy to implement because it does not require
accelerometer reorientation. This is one of the main con-
tributions of our work since previous approaches have
used expensive computations to reorient the accelerom-
eter. The algorithm was evaluated using 678 Km of
drive data, which involved 22 different drivers, 5 differ-
ent types of vehicles (bus, auto rickshaw, cycle rickshaw,
motorcycle, and car), and 4 smartphones. The results are
very promising and can be further improved by aggregat-
ing detection reports from multiple smartphones.

1 Introduction

Speed-breakers (speed humps/speed bumps/sleeping po-
liceman) are traffic calming devices commonly installed
to reduce speed related accidents [23]. Speed-breakers
are designed to be driven over at a predetermined com-
fortable speed, while causing exceeding discomfort at
higher speeds. The reduction in average vehicular speed
significantly improves the safety of people in the neigh-
boring areas. For example, a before and after study in
Ghana found that speed humps reduced casualty crash
frequencies by 37.5%, fatal crashes by 46% and pedes-

trian crashes by 72% [8]. This traffic calming tech-
nique is of special value in developing countries because
“stop”, “yield” and “speed limit” signs do not work due
to shortage of traffic enforcement resources [1]. As a re-
sult, speed-breakers are ubiquitous in many developing
countries, including India, Chile, Egypt, Ghana and Pak-
istan [12].

Even though there is evidence that speed-breakers re-
duce speed related accidents, they have also been known
to cause accidents and injuries. When an automobile ap-
proaches a speed-breaker at a speed greater than a thresh-
old velocity, the risk of accident or injury to the pas-
sengers becomes substantial [11]. For example, a mo-
torcyclist who hit a speed hump in Isleworth in 2001
was ejected from the bike and suffered serious injuries
(paralysis) [14]. In another incident, a 20 year old fe-
male was killed in Pune, India in 2012 after her motor-
bike went over a speed-breaker at a high speed [6]. Mo-
torcycles and scooters are specially vulnerable because
inconspicuous speed-breakers can throw them off bal-
ance [14]. Additionally, passengers of large vehicles like
buses, trucks and tempos are also vulnerable to speed-
breaker induced injuries. In [5], authors provided case
details of patients who suffered back and neck injuries
that occurred when their transport bus crossed a speed
hump. In one case, a 49 year old female traveling on a
double decker bus was jolted upwards when the bus tra-
versed a speed hump, and on landing back fractured her
third lumbar vertebra. In the two cases cited in [5], there
was evidence that the buses were traveling at a speed
greater than recommended for crossing speed humps. A
recent study from Chile reported that 46 patients admit-
ted in Hospital del Trabajador de Santiago over a eleven
year period from 1997 to 2008 sustained spine fractures
after passing over a speed hump [17]. Of these 46 pa-
tients, 44 were injured in a bus (42 were in the last row),
whereas 2 were in a car. Yet another study from Turkey
[3] reported five cases of speed-breaker induced spinal
column injuries, and in four out of the five cases the ve-
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hicles were traveling at a speed faster than recommended
for crossing that speed-breaker. Crossing a speed bump
at higher than recommended speed may also damage ve-
hicles and the freight, increasing overall logistical costs.
For example, it was shown that apples stored in bins get
bruised during the passage of a truck over a speed bump,
and a reduction in speed helps reduce fruit damage [24].

Speed-breakers are inconspicuous under special con-
ditions, like when there is snow, fog, or rain; or at night
when they are hard to see. This problem is particu-
larly acute in developing countries where speed-breakers
don’t always accompany advanced warning signs. Eng-
land’s Department of Transport recommends that road
humps must be located so that they are always preceded
by a speed reducing feature [18]. Traffic lights are re-
quired to warn of the presence of road humps and there
must be adequate lighting source in the surrounding area
[18]. Such guidelines are often ignored in developing
countries and as a result most speed-breakers do not
have any markings or warning lights. Moreover, poorly
trained workers often create speed-breakers that do not
comply with standard dimensions [20]. Recently Banga-
lore police counted 4,536 non-compliant, illegal speed-
breakers [20]. Illegal speed-breakers have been reported
in cities all across India (e.g., [2]) and in countries like
Pakistan [10], Malaysia [13] and Russia [22]. The di-
mensions of these illegal speed-breakers deviate signifi-
cantly from what is considered safe by the government
and transportation researchers worldwide [9, 11, 19].
Moreover, they are often installed in locations frequented
by transport buses, increasing the risk of spinal column
injuries. Hence, drivers in developing countries should
be extra careful and slow down even more to avoid in-
juries from illegal and unmarked speed-breakers.

We propose a system named the Speed-breaker early
WArning System (SWAS) that uses a smartphone based
application to alert the driver in advance when the vehicle
is approaching a speed-breaker. This gives the driver suf-
ficient warning (and time) to slow down to a safe speed.
SWAS can warn the driver even when there are no warn-
ing signs or lights on the road, or when the markings
are inconspicuous due to low visibility conditions. The
smartphone application downloads GPS coordinates of
all speed-breakers in the vicinity from a SWAS server. It
then starts monitoring the phone’s instantaneous GPS lo-
cation and warns the driver when the vehicle approaches
a speed-breaker. Smartphone based application is a vi-
able solution for the developing world because of the in-
creasing availability of low cost (less than $100) Android
based smartphones.

The main challenge lies in populating the SWAS
database with speed-breaker locations. To accomplish
this, the same smartphone application that provides
speed-breaker warnings also detects new speed-breakers.

This application collects readings from the smartphone’s
3 axis accelerometer and examines them for patterns that
represent speed-breakers. When it infers a previously
unknown speed-breaker, its location is shared with the
SWAS server. When the SWAS server receives infor-
mation about a new speed-breaker from multiple smart-
phones, it adds this speed-breaker and its location to the
SWAS database.

We make two main contributions in this work. First,
we propose a new algorithm for detecting speed-breakers
given a time series of 3 axis accelerometer data. Sec-
ond, we demonstrate that it is possible to extract infor-
mation from the amplitude vector, obviating the need
for accelerometer reorientation. This approach is sim-
pler to implement in comparison with previously pub-
lished methods that require inputs from other sensors like
GPS [16] or magnetometer [4] for accelerometer reori-
entation. In addition, we evaluated our algorithm using
a rich data set which includes various different types of
vehicles, drivers and speed-breakers.

2 Related Work

A method for detecting vehicle braking and road bumps
was proposed in [4]. They used machine learning tech-
niques to detect road anomalies and braking events from
accelerometer and magnetometer data. The method will
not always work because magnetometer is not present in
all phones, is susceptible to magnetic interference and
increases battery consumption. In addition, the perfor-
mance of this algorithm was not evaluated for various
different types of speed-breakers, vehicles and drivers.
A method for detecting speed bumps and braking events
was also proposed in [16]. This work did not differentiate
between potholes and speed-breakers, and labeled them
both as speed bumps. Just like [4] requires magnetome-
ter for reorientation, [16] requires GPS for reorientation,
increasing overall complexity and battery consumption.
Recently, mobile phone crowd-sourcing based pothole
detection has also gained significant attention [7]. In this
work [7], the mobile phone had to be placed a certain
way on the dashboard to avoid reorientation complexity.
Authors of [21] attempted to solve the pothole detection
problem without taking into account accelerometer re-
orientation. In another work, authors of [15] proposed
a fixed threshold based pothole detection algorithm that
may not work with different types of phones or cars be-
cause of the difference in overall sensitivity to variations
along vehicle’s z-axis.

2



Figure 1: The three axes of a car and a smartphone. The
Z-axis of the phone does not always align with the z-axis
of the car, e.g., when the phone is in the driver’s pant
pocket.

3 Detection Methodology

If the sampling rate is fixed at R samples/sec, the SWAS
application collects a total of 3×RT samples in a fixed
time duration of T seconds (1×RT samples from each
of the 3 axes). Then, given a set of 3× RT samples,
the application must decide whether or not there was a
speed-breaker when these samples were collected. The
value of T was fixed to 2 seconds based on the observa-
tion that it usually takes less than 2 seconds to cross a
speed-breaker (assuming some fixed maximum velocity)
.

Smartphone’s axes don’t always align with the car’s
axes (see Figure 1) because passengers can place their
smartphone in any location, e.g., pant pocket, purse, car
seat, dashboard, etc. Since road anomalies like pot-
holes and speed-breakers primarily manifest along the
z-axis of the vehicle, previous works attempted to re-
orient the phone’s axes with that of the car using some
other sensors [4, 16]. We have adopted a slightly differ-
ent approach in this work, wherein, only the amplitude
of the acceleration vector is sufficient to detect speed-
breakers. Since the amplitude comprises of forces expe-
rienced along all three axes, it already has a component
of forces experienced along the vehicle’s z-axis. Hence,
it should be possible to detect speed-breakers from time
series of amplitude data.

As a first step, the 3×RT accelerometer readings are
converted to the corresponding set of RT amplitude sam-
ples. If xi, yi and zi are the values of the X, Y and Z
axis accelerometer readings, then the amplitude is sim-

ply ai =
√

x2
i + y2

i + z2
i .

3.1 Feature Vector
Given a set of RT amplitude samples, the following fea-
tures are used to detect speed-breakers.

1. Standard Deviation: It was observed that the am-
plitude of acceleration vector sways widely when
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Figure 2: Type 1 speed-breaker occurred between time
680 sec and 682 sec. Consider a two second window
starting at time 680 sec, then the feature vector is as fol-
lows {2.622, 6, 0.399, 3.5744, 5.0066}. Features are
listed in the same order that they are defined in Section
3.1.

the vehicle crosses a speed-breaker. As a result the
standard deviation of amplitude samples collected
in a T second window is expected to be higher than
usual during a speed-breaker (see Figures 2 and 3).

2. Number of Mean Crossings: Given a set of RT am-
plitude samples collected over a time period of T
seconds, this feature counts the number of times that
the amplitude signal crosses the mean of these RT
amplitude samples. Since a speed-breaker causes
the amplitude signal to sway widely, the number
of mean crossings is expected to be lower during
a speed-breaker.

3. Maximum Mean Crossing Interval: The time inter-
val between two consecutive mean crossings is de-
fined as the mean crossing interval. The maximum
mean crossing interval during the sampling window
of T seconds is expected to be longer when there is
a speed-breaker.

4. Ratio of Standard Deviations of Current and Previ-
ous Window: Ratio of standard deviations of cur-
rent and previous window is expected to be higher
in the case of speed-breaker.

5. Ratio of Standard Deviations of Current and Next
Window: Ratio of standard deviations of current
and next window is expected to be higher in the case
of speed-breaker.

3.2 Classification
We collected evaluation data using several different types
of vehicles (i.e., car, motorcycle, bus, cycle-rickshaw,
and auto rickshaw) driven by different people on vari-
ous different roads in New Delhi, India. Given a time
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Figure 3: Time series of amplitude without any speed-
breakers. Consider a two second window starting at time
1807 sec, then the feature vector is as follows {0.3404,
11, 0.245, 0.8812, 0.7729}. Features are listed in the
same order that they are defined in Section 3.1.

Figure 4: Two different types of speed-breakers common
in New Delhi, India.

series of accelerometer data from a particular drive, we
first extracted sample windows where the person con-
ducting the measurements had visually observed and
marked a speed-breaker. Feature vectors obtained from
these windows formed the set labeled “speed-breaker”.
The set labeled “not a speed-breaker” was obtained by
selecting windows of samples where the person col-
lecting the measurements did not observe any speed-
breakers. Sometimes, when the vehicle crossed a pot-
hole, the resultant feature vector was manually identified
and marked as “not a speed-breaker”. The two labeled
data sets were of the same size to avoid bias in classifi-
cation. We used the support vector machine (SVM) for
the classification because it is a discriminating, inher-
ently non-linear (when kernel is applied) approach and
there is no need to make assumption of data parameters
(distribution parameters). Each of the five features were
normalized by subtracting the mean and dividing by stan-
dard deviation.

4 Data Set

We wrote an Android application for recording ac-
celerometer data along with user input. At least two
phones were used in every drive, one for collecting ac-
celerometer data (measurer), and the other for record-
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Figure 5: Probabilities of detection PD and false alarms
PFA for different values of k in k-fold cross validation.

ing user input (marker). The measurer was placed in
different locations during the different drives, e.g., pant
pocket, dashboard, near the gearbox, near the rear car
speakers, etc. Whenever we observed that the vehicle
was passing over a speed-breaker, we pressed a but-
ton on the marker to record the ground truth. The two
phones were time synchronized so that the ground truth
markings in the marker could be correlated with the ac-
celerometer readings in the measurer. The marker had
two buttons for recording user input, namely, “Type 1
Speed-Breaker” and “Type 2 Speed-Breaker”. Figure
4 depicts two types of speed-breakers that are common
in New Delhi. Type 1 speed-breakers usually have a
travel length of 3 to 6 feet and are 5 to 10 inches high,
whereas Type 2 speed-breakers are 3 to 6 inches high
with a length of 1 ft to 2 ft.

The evaluation data was collected in New Delhi, Na-
tional Capital Region (NCR) and the total data set dis-
tance was 677.9 Km. Three measurers and one marker
were used for some of the drives resulting in data set dis-
tance that was three times the actual travelled distance.
The three data sets are still unique and interesting be-
cause measurers were of different make and were placed
in different locations inside the vehicle. We used several
different vehicles for the data collection, 219.5 Km in
auto rickshaws (or three wheeler or tuk-tuk), 40.15 Km
in cycle rickshaws (or bike taxi), 290.5 Km in cars, 53.6
Km in motorcycles and 74.1 Km in Bus. Whenever pos-
sible, one measurer was placed in front of the driver, e.g.,
on the dashboard (in case of a car) or in the front basket
(in case of the cycle rickshaw), to replicate an important
use case where the driver uses an integrated phone based
navigation and speed-breaker warning system. A total of
22 different drivers (some very aggressive) were behind
the wheel during our data collection.

5 Evaluation

First, k-fold cross validation was performed on the entire
labeled data set from all types of vehicles. If the marker
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Figure 6: Probability of detection PD of Type 1 and Type
2 speed-breakers for different values of k in k-fold cross
validation.
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Figure 7: Probabilities of detection and false alarms
when the classifier was trained using data from the same
type of vehicle as the one under test.

recorded n speed-breakers during any particular drive,
then 2n labeled feature vectors could be extracted from
this drive, half of them labeled “not a speed-breaker”.
All labeled feature vectors from all the drives were then
randomly distributed amongst k equal sized groups. The
classifier was trained using k−1 groups and tested using
the one remaining group. This process was repeated mul-
tiple times to obtain probabilities of detection and false
alarms. Figures 5 and 6 show classifier performance as
a function of k, and here it is evident that the classifier
has good performance for all considered values of k. It
is also clear from Figure 6 that Type 1 speed-breakers
have a higher probability of detection than Type 2 speed-
breakers. This may be because variations induced by
Type 2 speed-breakers last for a shorter duration than
those by Type 1 speed-breakers.

In another evaluation, we trained the classifier using
labeled samples from the same type of vehicle as the
drive under test. For example, data collected using a par-
ticular car was tested with a classifier that was trained
using data only from (other) cars. This experiment was
necessary to understand the effect of other vehicle train-
ing data on classification accuracy. The performance re-
sults for four different vehicle types are shown in the Fig-
ure 7. Data collected in buses was omitted because the
number of speed-breakers observed during these drives

was statistically insignificant. Clearly, the classifier per-
forms better on data from cars and auto-rickshaws than
on data from motorcycle and cycle-rickshaws. The high
false positive rate in the case of a motorcycle can be ex-
plained by the fact that the motorcyclist was changing
gears and applying brakes using his feet, and the mea-
surer phone was in his pant pocket. In the case of cycle
rickshaws, we observed that the noise levels were very
high in the accelerometer data, probably because of a
poor suspension system.

6 Discussion

When the SWAS application running on a particular
smartphone detects a previously unknown speed-breaker,
it shares speed-breaker location with the SWAS server.
The server doesn’t immediately add this speed-breaker
to the confirmed list, but instead waits for other smart-
phones to report the same. If multiple smartphones
report the same speed-breaker, it can be added to the
confirmed list. This step is necessary to ensure that
false alarm locations aren’t stored as speed-breakers,
and drivers aren’t alerted when they approach a loca-
tion where someone else experienced a false alarm. If
the probability of false alarms is 0.1, the probability that
four different smartphones will falsely report the same
location as a speed-breaker is 0.0001 (under certain in-
dependence assumptions). The server can further reduce
the overall probability of false alarms by increasing the
threshold for minimum number of sources that reinforce
the same belief to an even higher value. Note that the
overall probability of detection also decreases with a de-
creases in false alarm probability. The SWAS server can
tradeoff the two probabilities by increasing or decreas-
ing the threshold for number of sources that must report
a speed-breaker before it is confirmed.

In addition to fine tuning the probabilities of false
alarm and detection, the SWAS server can also reject
speed-breaker reports from certain types of vehicles.
Figure 7 shows that the detector performs best when the
smartphone is in a car or auto-rickshaw. The false alarm
rate is very high in case of motorcycle and the detection
rate is very low in case of cycle-rickshaw. If the SWAS
server (or application) is aware of the vehicle type, it can
reject new speed-breaker reports when the vehicle type
is motorcycle or cycle-rickshaw. Vehicle type is either
inferred from things like acceleration, motor noise (mi-
crophone), and average velocity (GPS), or is explicitly
input by the mobile user.

Once the database of speed-breaker locations has been
built, applications other than early warning system can
be enhanced with speed-breaker information. For exam-
ple, it has been shown that a speed-breaker can delay an
emergency vehicle by as much as 10 seconds per device
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[14]. Present day navigation systems take into account
things like driving distance, traffic congestion, time of
day, etc., but not speed breaker location. These systems
can be enhanced with information about location and es-
timated dimensions of speed-breakers. Ambulances can
then be routed over paths that minimize the overall driv-
ing time, while taking into account all speed-breakers in
the path.

The SWAS smartphone application should be opti-
mized to reduce the overall battery consumption. The
application’s warning function continuously monitors in-
stantaneous GPS location and generates an alert when
the vehicle approaches a speed-breaker. The continu-
ous GPS location lookup has an undesirable outcome of
significantly increasing the overall battery consumption.
As a solution, the application can maintain a vehicle ve-
locity estimate, and after downloading the list of speed-
breakers in the vicinity, it can calculate the time required
to reach the nearest speed-breaker. The application can
then switch off the GPS (to save battery) for some time
period which is shorter than the time required to reach
the nearest speed-breaker.

7 Conclusion

This work proposed an early warning system that can
alert the driver in advance when the vehicle is approach-
ing a speed-breaker. Since the proposed detection algo-
rithm does not require accelerometer reorientation, this
work demonstrates that variations along the vehicle’s z-
axis can be detected using very simple methods. It was
shown that the probability of detection of type 1 speed-
breakers is higher than the probability of detection of
type 2 speed-breakers. It was also shown that the de-
tector has good performance when smartphone is in a car
or an auo-rickshaw, and not so good performance when
it is in a motorcycle or cycle-rickshaw.
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