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Abstract—Increasingly ubiquitous communication networks
and connectivity via portable devices have engendered a host
of applications in which sources, for example people and envi-
ronmental sensors, send updates of their status to interested re-
cipients. These applications desire status updates at the recipients
to be as timely as possible; however, this is typically constrained
by limited network resources. In this paper, we employ a time-
average age metric for the performance evaluation of status
update systems. We derive general methods for calculating the
age metric that can be applied to a broad class of service systems.
We apply these methods to queue-theoretic system abstractions
consisting of a source, a service facility and monitors, with
the model of the service facility (physical constraints) a given.
The queue discipline of first-come-first-served (FCFS) is explored.
We show the existence of an optimal rate at which a source
must generate its information to keep its status as timely as
possible at all its monitors. This rate differs from those that
maximize utilization (throughput) or minimize status packet
delivery delay. While our abstractions are simpler than their
real-world counterparts, the insights obtained, we believe, are
a useful starting point in understanding and designing systems
that support real time status updates.

I. INTRODUCTION

The information age [1] has witnessed huge improvements
in computing, access and storage of information. More re-
cently, fueled by ubiquitous connectivity and advancements
in portable devices, real-time status updates have become
increasingly popular. These range from news and weather
reports and updates by individuals on Twitter about what is
keeping them busy, to updates by environmental sensors [2].

Real-time status updates can enable a variety of applica-
tions. Temperature and humidity updates from a forest can
help better predict and control forest fires, energy utilization
information can help make a smart-home energy efficient,
knowledge of the velocity, acceleration of a car, see Figure 1,
can assist drivers in an intelligent transportation system to
make safe maneuvers [3].

In the above examples, the goals are to ensure that the
agency that monitors fires stays current about conditions in
the forest and drivers stay current about status of vehicles in
their vicinity, respectively. These examples share a common
description: a source generates time-stamped status update
messages that are transmitted through a communication system
to a monitor. The goal of real-time status updating is to ensure
that the status of interest, is as timely as possible at each
monitor. When the monitor’s most recently received update
at time t is time-stamped u(t), the status update age, which
we will refer to as simply the age, is t− u(t). The monitor’s
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Fig. 1: Sensors in a vehicle generate their status updates, which
the in-vehicle radio delivers to other vehicles in vicinity. The status
updates from a sensor are queued as is, or aggregated with other
sensors’ updates, to be served by the radio.

requirement of timely updating corresponds to small average
status update age.

We will see that the goal of timely updating is neither
the same as maximizing the utilization of the communication
system, nor of ensuring that generated status updates are
received with minimum delay. Utilization may be maximized
by making the sensor send updates as fast as possible.
However, this may lead to the monitor receiving delayed
statuses because the status messages become backlogged in
the communication system. In this case, delay suffered by the
stream of status updates can be reduced by reducing the rate of
updates. Alternatively, reducing the update rate can also lead to
the monitor having unnecessarily outdated status information
because of a lack of updates.

How often must a source generate status updates? Ideally,
we would want a monitor to receive a status update, typically
communicated in packet form, at the very instant it was
generated at a source. If this were possible, a source would
simply generate status updates as fast as possible. However,
real world constraints dictate that the delivery of a status
message requires a nonzero and typically random time in the
system (network). In many systems, this time will also depend
on the previously queued packets in the system.

Figure 1 shows an example of such a system. Status updates
are generated by sensors in a vehicle. The status update packets
are queued while they wait to be serviced by the car radio.
The packet currently being serviced by the radio waits for
medium access and transmission before it is received by other
cars. Note that each sensor in the car may be a source or that
the car may aggregate a collection of sensor measurements
into a status update message that is transmitted as a single
packet. To simplify the following discussion, we focus on this
case and assume the car radio is carrying the packets of a
single source.
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Suppose the radio interface is a simple queue; packets
passed to the radio are queued first-come-first-served (FCFS)
for direct transmission to the monitor. The service time of each
packet will depend on the wireless channel. This service time
may or may not incorporate retransmissions due to channel
errors and backoff due to the activity of other wireless trans-
mitters. While system models that incorporate these effects
can be arbitrarily complex, we observe that even in simple
settings in which service times are independent identically
distributed (iid) random variables, for example an M/M/1
queue with iid exponential service times, the optimal updating
rate is unknown.

In general, we will look at FCFS systems in which the real-
time status generation at the source and the time spent by
status packets in service before they are received by one or
more monitors is described by known random processes.

We present an overview of related work in Section II. In
Section III we derive the general expression of age for a FCFS
queue. In Sections IV, V and VI we find server utilizations
that minimize age for M/M/1, M/D/1 and D/M/1 systems,
respectively. In Section VII we find the lower bound on achiev-
able age for any service time distribution. We summarize our
contributions and present possible extensions in Section VIII.

II. RELATED WORK

The requirement of ensuring freshness occurs in various
fields, including that of networks, real time databases and
warehousing. In [4] we look at minimizing the age of status
updates sent by vehicles over a carrier-sense multiple access
(CSMA) network. The minimum age can be approached using
gradient descent. However, it is not known in general and is
only seen to exist in simulations. In [5] we show that allowing
nodes to piggyback other nodes’ status updates can lead to a
smaller age. In both [4] and [5] we use the phrase system age
of information instead of age of status updates.

In [6] the authors want to maximize the freshness of data
in warehouses to meet user demands. They estimate the
queue length and delay at the staging area of a warehouse,
which is where updates wait before they are committed to
the warehouse database. Experiments lead them to conclude
that they want to have small queue build ups. While their
observation about queues is in line with ours, they do not
consider optimal source (update) rates or systems in general.

Web caching reduces the latency in returning a web page to
a client. However, unless refreshed often enough, a cache will
return stale web pages. The rate of refreshing is limited by the
finite time it takes for a cache to be updated after the page
has been updated at the server. In [7] the authors propose an
architecture that limits the “degree of staleness” of a cache.
Our work, for fairly simple descriptions of the time it takes to
update a cache, answers how often the cache must be refreshed
such that its age is minimized.

In [8] the authors look at periodic transactions updating real
time databases. Each transaction updates the database with
data that is associated with a deadline relative to when it is
generated. In their work, there is no assumed limit on available

processing power (service rate). The objective is to find the
combination of update period and deadline that ensure that
all transactions complete before their deadlines, ensuring the
freshness of data and minimizing the CPU utilization.

Ad hoc networking protocols typically use a route cache to
forward packets to their destinations. In [9] the authors propose
a mechanism that avoids propagation of stale route information
through the network. They do not want to broadcast new route
information periodically, however, to avoid the associated
overheads. Their method uses an epoch numbering system that
helps a node in the network to reject older information. In [10]
the authors consider the issue of frequency of hello messages
in ad-hoc networks. The frequency must not be so large as to
congest the network but also not too small that the nodes have
stale information.

Finally, dissemination in sensor networks has been looked
at under varied constraints. For example, in works like [11]
and [12] the authors consider energy efficient dissemination
of state in sensor networks. More frequent updates lead to
greater energy consumption and smaller sensor lifetime. Our
work suggests strategies that a sensor, when awake, can use
to minimize age of its status updates.

III. FCFS STATUS UPDATE AGE

We derive the average status update age for a system that
has a source updating a monitor through a first-come-first-
served single server packet queue. We will use a graphical
argument. Figure 2 shows a sample variation of age ∆(t), as
a function of time t, at the monitor. Without loss of generality,
assume that we begin observing at t = 0 when the queue is
empty and that the age is ∆(0) = ∆0. The first status update
is generated at t1, followed by updates at t2, t3, . . . , tn.

The age at the monitor increases linearly in time in the
absence of any updates and is reset to a smaller value when
an update is received. Update i, generated at time ti, finishes
service and is received by the monitor at time t′i. At t′i, the
age ∆(t′i) at the monitor is reset to the age Ti = t′i − ti of
the received status update. The age Ti is also the system time
of the update packet i and is the sum of the time the packet
waited in the queue and the time it spent in service. Thus
the age function ∆(t) exhibits the sawtooth pattern shown in
Figure 2.

The time average age of the status updates is the area under
the sawtooth function in Figure 2 normalized by the time
interval of observation. Over an interval (0, T ), the average
age is

∆T =
1

T

∫ T
0

∆(t)dt. (1)

For simplicity of exposition, the length of the observation
interval is chosen to be T = t′n, as depicted in Figure 2.
We decompose the area defined by the integral in (1) into
a sum of disjoint geometric parts. Starting from t = 0, the
area can be seen as the concatenation of the polygon area Q̃1,
the trapezoids Qi for i ≥ 2 (Q2 and Qn are highlighted in
the figure), and the triangular area of width Tn over the time
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Fig. 2: Example change in age at a monitor under FCFS queuing.

interval (tn, t
′
n). With N(T ) = max{n|tn ≤ T } denoting the

number of arrivals by time T , this decomposition yields

∆T =
Q̃1 + T 2

n/2 +
∑N(T )
i=2 Qi

T . (2)

From Figure 2, we see that the area Qi can be calculated
as the difference between the area of the isosceles triangle
whose base connects the points ti−1 and t′i and the area of
the isosceles triangle with base connecting the points ti and
t′i. Defining

Xi = ti − ti−1 (3)

to be the elapsed time between the generation of updates i−1
and i, it follows that

Qi =
1

2
(Ti +Xi)

2 − 1

2
T 2
i = XiTi +X2

i /2. (4)

When the generation of updates can be represented as the
arrivals of a stochastic process, Xi is the interarrival time of
update i. Substituting (4) in (2), some rearrangement yields
the time-average age

∆T =
Q̃

T +
N(T )− 1

T
1

N(T )− 1

N(T )∑
i=2

[
XiTi +

X2
i

2

]
(5)

where, Q̃ = Q̃1 +T 2
n/2. We observe that the age contribution

Q̃ represents a boundary effect that is finite with probability
1, so the first term in (5) will vanish as T grows. Let

λ = lim
T→∞

N(T )

T (6)

be the steady state rate at which status update packets are
generated. We assume that the limit exists and is finite.
Furthermore, as N(T ) → ∞, the remaining summation
term in (5) is a sample average that will converge to its
corresponding stochastic average. The average status update
age can be obtained as

∆ = lim
T→∞

∆T = λ
(
E[XT ] + E

[
X2
]
/2
)
, (7)

where E[·] is the expectation operator, and X and T are the
random variables that correspond to the interarrival time and
system time of an update packet, respectively.

We note that the average update age in (7) holds under

weak assumptions on the ergodicity of the service system.
Furthermore, (7) is a general result for a broad class of service
systems in which the update packets are processed FCFS.
For example, (7) would hold for a queue in which the status
update stream shares the service facility with other packet
streams. However, evaluation of the age ∆ can be challenging.
In particular, X is the random variable that describes the
time between generation of an update packet and the one that
preceded it while T is the system time of that same packet.
The variables X and T are dependent. A large interarrival time
X allows the queue to empty, yielding a small waiting time
and typically a small system time T . That is, X and T tend
to be negatively correlated and this complicates the evaluation
of E[TX].

Next we will find the age and the server utilization that
minimizes it for standard queuing systems for FCFS queues.
We start with the M/M/1 system.

IV. M/M/1 - FIRST COME FIRST SERVED

We consider the FCFS M/M/1 system with arrival rate
λ and service rate µ. That is, update packets are generated
and submitted to the system as a rate λ Poisson process and
thus the status update interarrival times Xi are independent
and identically distributed (iid) exponential random variables
with E[X] = 1/λ. Further, service times are iid exponentials
with average service time 1/µ. We will calculate the age for
the system and then find the server utilization ρ = λ/µ that
minimizes the average age ∆.

Consider the average age ∆ in equation (7). For an expo-
nential X , E

[
X2
]

= 2/λ2. We now will derive an expression
for E[TX]. Consider status update i. Its system time is

Ti = Wi + Si, (8)

where Wi and Si are the respective waiting time and service
time of packet i. If packet i−1 has already been served when
i is generated, Wi = 0. If i arrives when i−1 is either waiting
for or receiving service, Wi = Ti−1 − Xi. Combining these
observations, we can write the waiting time of packet i as

Wi = (Ti−1 −Xi)
+. (9)

We note that the Ti−1 depends on the arrivals and service times
of packets prior to i and is independent of the ith interarrival
time Xi. Furthermore, when the system reaches steady state
the system times are stochastically identical, that is T =st

Ti =st Ti−1. The probability density function of the system
time T for the M |M |1 system is [13]

fT (t) = µ(1− ρ)e−µ(1−ρ)t, t ≥ 0. (10)

It follows that the conditional expected waiting time Wi given
Xi = x is

E[Wi|Xi = x] = E
[
(Ti−1 − x)+|Xi = x

]
(11)

= E
[
(T − x)+

]
(12)

=

∫ ∞
x

(t− x)fT (t) dt =
e−µ(1−ρ)x

µ(1− ρ)
. (13)
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Returning to the calculation of E[TX] = E[TiXi], we note
that the service time Si is independent of Xi, permitting us
to write

E[TiXi] = E[(Wi + Si)Xi] = E[WiXi]+E[Si]E[Xi], (14)

where E[Si] = 1/µ and E[Xi] = 1/λ. Further, using iterated
expectation and the exponential (λ) PDF of Xi, (13) implies

E[WiXi] =

∫ ∞
0

xE[Wi|Xi = x]fXi
(x) dx (15)

=
ρ

µ2(1− ρ)
. (16)

From (7), (14) and (16), the average age can be obtained as

∆ =
1

µ

(
1 +

1

ρ
+

ρ2

1− ρ

)
. (17)

For fixed service rate µ, we can minimize the average age ∆
with respect to the arrival rate λ or, equivalently, the offered
load ρ = λ/µ. Differentiating (17) with respect to ρ and setting
to 0, we obtain that the optimal utilization ρ∗ satisfies the
equation ρ4− 2ρ3 + ρ2− 2ρ+ 1 = 0 and thus ρ∗ ≈ 0.53. The
server is idle ≈ 47% of the time. The optimal age is achieved
by choosing a λ that biases the server towards being busy only
slightly more than being idle. At the optimal utilization ρ∗, the
average number of packets in the system is ρ∗/(1−ρ∗) ≈ 1.13.

Note that we would want ρ close to 1 if we wanted to
maximize the throughput, which is the number of packets
delivered to the monitors every second. If we instead wanted
to minimize packet delay, that is minimize the system time of
a packet, we would want ρ to be close to 0.

V. M/D/1 - FIRST COME FIRST SERVED

In certain systems, the service facility represents an ag-
gregator of randomly arriving status updates in which the
update packets are fixed length and packet processing times
are deterministic. For example, this may describe a health care
facility in which patients’ heart rates updates are collected by
a central monitor. Under the assumption that the generation of
such information at the patients is independent and identically
distributed, the aggregate traffic at the health care center may
be modeled as a Poisson process of rate λ. This system can
thus be abstracted as an M/D/1 system.

In a M/D/1 system, packet arrivals are Poisson with rate λ
and service times is deterministic; Si = D for all i. We know
that E[X2] = 2/λ2. To find the average age (7) we need to
calculate E[TiXi]. We have Ti = Wi +D and

E[TiXi] = E[WiXi] +DE[Xi]. (18)

From equation (11), we have

E[Wi|Xi = x] = E[(T − x)+] = E[(W +D − x)+]

= E[W ] +D − x

− UD(x)

∫ x−D

0

(w +D − x)fW (w) dw,

(19)
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Fig. 3: An illustration of change of age (at a monitor) with server
utilization for M/M/1, M/D/1 and D/M/1 systems using FCFS.
The service rate assumed is µ = 1.

where
UD(x) =

{
1 x ≥ D,
0 otherwise (20)

denotes the delayed unit step function. Note that the waiting
time W of an M/D/1 system has expected value [14]
E[W ] = Dρ/(2(1− ρ)) and that the density fW (w) is ob-
tained as the derivative of the cumulative distribution function
(CDF) (see for example [15] [16])

FW (w) = (1− ρ)

bw/Dc∑
k=0

ρk
(
k − w

D

)k
eρ(

w
D−k). (21)

Using (19) for the conditional expectation E[Wi|Xi = x],
we calculate E[WiXi], as given by (15), numerically. Having
calculated E[WiXi], we can calculate the age ∆ using (7).
We find that a utilization of ρ ≈ 0.625 minimizes the age.

Figure 3 shows the variation of age with ρ for M/M/1
and M/D/1 FCFS systems for service rate µ = 1. Note the
similarity in age for smaller utilizations. This is because the
arrival processes are the same and the age of status is more
influenced by the small rate of status update packets. For larger
utilizations, the server more often has a packet waiting for
service and the age of status is influenced by the time a packet
waits for service. For such ρ the M/M/1 system sees a larger
age because packets with longer than average service times
can lead to large waiting times for those that follow. It has
a larger average system time than the deterministic system.
It is also why a smaller age is achieved by the deterministic
system, over all ρ.

VI. D/M/1 - FIRST COME FIRST SERVED

In a D/M/1 system the status packets are generated at a
fixed period, say D, and the service times are exponentially
distributed with mean 1/µ. For this system we have λ = 1/D,
E[X2]/2 = D2/2 and E[XT ] = DE[T ]. Substituting in (7),
we can write the expression for age as

∆ =
1

D

[
D2

2
+DE[T ]

]
. (22)

The average system time can be written as

E[T ] = E[S] + E[W ] =
1

µ
+

β

µ(1− β)
, (23)
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where 0 ≤ β ≤ 1 is the solution of the equation β =
LX(µ(1 − β)), with LX(·) being the Laplace transform of
the distribution of inter-arrival times [14]. For deterministic
arrivals with period D, the distribution is fX(x) = δ(x−D),
which gives LX(s) = e−sD. We can thus write β for the case
of deterministic arrivals with period D as

β = e−µ(1−β)D = −ρW
(
−ρ−1e(−1/ρ)

)
, (24)

where W(.) is the Lambert W function and the utilization
ρ = 1/(µD). From (22) and (23) the age can be obtained as

∆ =
1

µ

[
1

2ρ
+

1

1− β

]
. (25)

We plot the age for a range of ρ in Figure 3. The age is
minimized at a utilization ρ = 0.515. While the optimal
utilization is almost as small as in the case of an M/M/1
system, the age achieved, shown in Figure 3, is smaller for
D/M/1. At the optimal ρ, the memoryless arrivals lead to a
50% increase in age relative to deterministic arrivals.

VII. MINIMUM ACHIEVABLE AGE

For the FCFS systems we have analyzed up to now, the
update generator (source) can neither observe nor control the
state of the packet update queue, and the optimal load ρ∗

strikes a balance between overloading the queue and leaving
the queue idle. Next we derive lower bounds to the age by
considering a system in which the update generator observes
the state of the packet update queue so that a new status
update is generated the very moment the previous update
finishes service. In this setting, the server is always busy and
the waiting time of every update packet is zero. Since each
delivered update packet is as young as possible, the average
status update age obtained for this system is a lower bound
to the age for any queue in which updates are generated as
a stochastic process independent of the current state of the
queue.

Referring to the age function ∆(t) in Figure 2, ti = t′i−1 for
all packets i in this system. For any packet i, Wi = 0. Also,
Ti = Si + Wi = Si, λ = 1/E[S] and Xi+1 = Si. Further,
E[XT ] = E[XiSi] = E[Xi]E[Si] = (E[S])2. The average
age given in (7) can thus be written as

∆∗ =
1

E[S]

[
E[S2]

2
+ (E[S])2

]
. (26)

For a system with memoryless service at rate µ, the minimum
average age is ∆∗ = 2/µ.

However, non-negativity of the variance of S implies
E
[
S2
]
≥ (E[S])2. Thus, for all service time distributions with

E[S] = 1/µ, (26) yields the lower bound

∆∗ ≥ 3E[S]

2
=

3

2µ
. (27)

This lower bound is achieved by the system when the service
times are deterministic.

VIII. CONCLUSIONS AND FUTURE WORK

We have looked at the problem of keeping the status
updates generated by a source as new as possible at interested
recipients, given a set of physical constraints. We devised a
method that helped us analyze such systems abstracted in
queue-theoretic terms, where the source was modeled as an
arrival process and the physical constraints as a given service
facility. We looked at single source and server (and one or
more monitors) systems under different assumptions of arrival
and service processes and the queue discipline of first-come-
first-served (FCFS). The arrival rate that minimizes the status
update age for the considered FCFS systems is derived. It
sets the utilization of the server to ensure that neither the
packets wait too long for service nor the server is idle too
often. Finally, we showed that the smallest age under FCFS
can be achieved if a new packet is available exactly when the
packet in service finishes service.

We plan to extend the work to other queue disciplines
like last-come-first-served. The general case, when we have
a network of sources connected to their monitors via different
service facilities is also of interest.
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