
Android Phone Based Appraisal of App Behavior
on Cell Networks

Shaifali Gupta, Rashi Garg, Nikita Jain, Vinayak Naik, Sanjit Kaul
IIIT-Delhi, New Delhi, India

{shaifali1219,rashi1216,nikita1210,naik,skkaul}@iiitd.ac.in

ABSTRACT
The rapid adoption of smartphones has engendered a large
ecosystem of mobile data applications. A large part of mobile
traffic is now data and not voice. Many of these applications,
for example VoIP clients, stay active in the background. In
the background, they may not communicate large amounts
of data. However, their regular bursts of activity can lead
to large signaling overheads, wastage of radio resources, and
draining of a phone’s battery. In this work we propose for
Android smartphones an on-the-phone mechanism to detect
background applications that due to bad design (given the
network’s settings) or their malicious nature (exploiting the
network’s settings) lead to above mentioned inefficiencies.
We also outline a fully functional ready-to-install tool that
we developed and used for our studies.

Categories and Subject Descriptors
H.4 [Network Architecture and Design]: Wireless Com-
munication; D.2.8 [Testing and Debugging]: Testing Tools

General Terms
Measurement, Experimentation, Performance

Keywords
Mobile, Cellular Networks, 3G, 4G, LTE, Testing Tools

1. INTRODUCTION
Cellular wireless data networks, for example 3G/LTE, have

a hierarchical architecture in which many base stations may
be controlled by a few radio network controllers and/or core
network gateways. A RNC in a 3G network (a gateway in
LTE) handles signaling and data traffic to and from a large
number of mobile phones. While the data path is handled
by fast network processors or ASIC(s), the signaling path
is handled by the gateway’s CPU (slow path). Increases in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MOBILESoft ’14, May 31–June 7 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2878-4/14/05 ...$15.00.
http://dx.doi.org/10.1145/2593902.2593916 ...$15.00.

signaling volumes can overload this CPU and can cause an
outage of data services in a large geographic region [2].
Smartphones have led to an explosion in the amount of

mobile data traffic. As a result, the signaling path is also
adversely affected. Many user applications, for example chat
and VoIP, stay active even when in the background. Such
background applications connect often to the mobile data net-
work [6], albeit only for a short period of time, to send short
bursts of data. Such chatty behavior leads to frequent allo-
cation and release of radio resources at the mobile network,
procedures that are accompanied by a significant amount of
signaling between the mobile and the network.
The RRC layer [4] at the user equipment (UE) and the

radio network controller is responsible for signaling that leads
to allocation and release of radio resources. A UE can ei-
ther be in idle mode (IDLE) or in connected mode. In the
connected mode, the UE may be in the DCH (Dedicated
Channel) or in the FACH (Forward Access Channel) state.
The UE cannot send or receive data in IDLE. To do so, it
needs to transition to one of the connected states. Transition
to a connected state is initiated when data buffers at the UE
or for the UE in the network, exceed certain pre-configured
thresholds. Amongst the connected states DCH consumes
more energy and provides larger throughput to the UE. Tran-
sitions to lower energy states are initiated when buffer levels
remain low (DCH→ FACH) or if no data activity is detected
(DCH/FACH→ IDLE) for a certain timeout period. Fre-
quent transitions between the idle and connected states lead
to large signaling overheads that can overload the signaling
pathways in the network. Also, energy is wasted when the
mobile stays in a high energy state waiting for a no-activity
timeout to occur. Frequent signaling can also cause complete
network outage in the worst case. A recent example of such
an outage took place in Japan1.
In our work, we say that an application is more efficient

than another, if the application communicates more data for
a given signaling load on the network and energy drain at
the phone. While doing so, we mainly focus on detection
of undesirable behavior rather than correction. We propose
the metrics of average energy/byte (EB) and the average
time-to-state-promotion (TSP) from the RRC IDLE state
to discriminate between applications based on how efficient
they are. We show that the metrics are able to discriminate
between commonly used applications, installed on an Android
phone, based on their efficiency. All required information is
gathered using a tool that runs on an Android smart phone.

1http://www.techinasia.com/docomo-outage-line/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

MOBILESoft’14, June 2–3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2878-4/14/06...$15.00
http://dx.doi.org/10.1145/2593902.2593916

54

2. DATA COLLECTION TOOL AND DECOD-
ING NETWORK PARAMETERS

Quantifying an application’s signaling efficiency requires
information about (a) the data packets that were exchanged
and (b) the RRC state transitions that took place. The
functionality of the tool is split into two parts, the Packet
Sniffer and the State Logger.

2.1 Capturing Data Activity
The packet sniffer uses libpcap [5], which is an open source

library for getting user-level packet capture on Unix like sys-
tems. We created a library for Android using the libpcap
source and the Android NDK. The sniffer is a binary exe-
cutable for Android and is written in C++. The executable
is launched in a shell with superuser privileges. The packet
sniffer enables us to capture all uplink and downlink packets
associated with a network interface along with corresponding
timestamps.

We used secret codes [1] to find and record the actual RRC
state of the device at any given instant. For detecting the
RRC state continuously, the secret code *#0011# (Samsung
specific2) is dialed, and the states are saved at regular in-
tervals using Android logcat on the phone. To associate
the RRC states with network traffic, we begin by launching
the packet sniffer in the background and the state logger
in the foreground. The packet information obtained from
the sniffer and the state information from the state logger is
then merged on the basis of timestamps. The merged data
provides us with a snapshot of network traffic occurring at
the phone and its impact on the device state.

2.2 Decoding Network Parameters
The inefficiencies that an application can cause are intrin-

sically related to the inactivity timeouts used by the network,
set by the service provider, to go from a high energy to a low
energy state. The timeouts[7] used are not publicly available.
We infer them using the data collection tool and an Android
service that generates UDP packets. The UDP packets gen-
erated by the service force the RRC state to transition to
DCH. We note the time the device enters DCH (logged by
our tool) and the time of the following transition to FACH.
The difference between these times is the DCH→ FACH
timeout. Similarly, the FACH→ IDLE timeout is calculated.
We calculate the timeout values from two different cellular
service providers and two different smartphones. We do not
find a significant difference in the values used by the two
service providers. The values are not phone dependent either.
The DCH→ FACH timeout is obtained to be about 6 seconds
and the FACH→ IDLE timeout is obtained to be about 32
seconds. Similar values for DCH→ FACH were obtained
in [7]. However, they measured a FACH→ IDLE timeout of
12 seconds.

3. MEASURING APP EFFICIENCY
Our approach of discriminating between applications based

on their efficiency is best demonstrated by two (mock) mali-
cious applications — SYN Attack and ICMP Attack — that
we created to force the RRC state machine between idle and
connected states as often as possible. SYN Attack sends
SYN packets every 38 seconds. The periodicity is chosen

2We have tested Samsung Galaxy Y Young, Samsung Galaxy
Duos, Samsung Chat, and Samsung Galaxy S Advance.

Figure 1: The four quadrants of application behavior.
The quadrant an application falls into is a function of
its background activity and the network’s settings for
inactivity timers.

based on our observations that DCH→ FACH timeout is
about 6 seconds and FACH→ IDLE timeout is about 32
seconds. The choice of 38 seconds implies state demotions
from DCH→ IDLE are almost immediately followed by data
in the buffer leading to a state promotion. The ICMP Attack
is similar in that it sends a ping packet every 38 seconds.
The only difference with respect to the SYN Attack is that
the SYN Attack is one way communication and generates
less traffic. We use our tool to log packet traces for each of
these applications and also log the corresponding RRC state
transitions. The average energy/byte consumed by the SYN
Attack is calculated to be 339.74mJ/byte and the average
time to state promotion (TSP) after the RRC goes into IDLE
is 2.64s. Details of how these parameters are calculated are
given in Section 4. The corresponding values for the ICMP
attack are 125.18mJ and 3.79s respectively. The rather small
TSP of the applications is not surprising given the periodicity
of 38s.

The small TSP implies that signaling to allocate resources
that were just released needs to be performed. The smaller
the TSP the larger the signaling overheads due to an appli-
cation. SYN Attack is worse for the network than the ICMP
Attack as its energy/byte is much greater. Specifically, the
amount of data exchanged when the mobile is in connected
state is smaller for the SYN Attack. As a result, the energy
per transmitted byte expended during connected states for
the SYN Attack, which includes the energy that is spent
when the network is waiting for inactivity timers to expire, is
larger. Figure 1 shows four quadrants into which applications
may be grouped. Applications in the lower right corner are
the most efficient given the network’s settings of inactivity
timers. On the contrary, applications in the upper left corner
lead to waste of energy and a lot of signaling overhead for
every byte communicated.

4. METHODOLOGY FOR EXPERIMENT-
ING

We perform two kinds of experiments. In the first kind, an
application’s behavior is evaluated in isolation. Specifically,
we uninstall all other applications and non-essential services
from the Android phone. In the second kind, we evaluate
application behavior when a mix of applications is installed
on the smartphone. For every experiment, the packet traces
and corresponding state transitions are logged using the tool
described in Section 2. The applications whose behavior
we evaluate and compare are Line, WhatsApp, WeChat,
Skype, Gmail, Viber, and Facebook. Line, WhatsApp, and
WeChat are instant messaging applications. Skype and Viber
are VoIP applications. Gmail is an e-mail application and
Facebook is a social networking application. The similarities

55

0

200

400

600

WhatsApp Facebook Skype ICMP Attack Viber SYN Attack

En
er

gy
/B

yt
e(

m
J/

B
yt

e)

Figure 2: Box plots of Energy/Byte for a few selected
applications. Skype does very well on the energy front
and is much better than WhatsApp, Viber, and Face-
book. Results for all applications we evaluated are not
shown here for the sake of clarity.

0

100

200

300

400

500

WhatsApp Facebook Skype ICMP Attack Viber SYN Attack

TS
P

(s
ec

)

Figure 3: The TSP for selected applications. The spread
is similar for Skype, WhatsApp, Viber, and Facebook.
However, Viber has a much larger median TSP. It leads
to larger signaling overheads per unit data communi-
cated.

in the applications’ use cases makes comparing their relative
behaviors appropriate.The two metrics, energy/byte and TSP,
are calculated from the log created by the tool. Activities in
the log are split into measurement windows. A new window
starts on a state promotion. A state promotion occurs when
the RRC state changes from either IDLE→ DCH or from
IDLE→ FACH or from FACH→ DCH. The two metrics
are calculated over every window. The log also gives us
the number of bytes communicated during the window and
the total time spent in any individual state in the window.
The two together give us the energy/byte over the selected
window. The power consumed in DCH and FACH is set
to 800mW and 650mW respectively [8]. The time to state
promotion (TSP) after entering the idle state is the time
spent in idle just before a window ends. More details on this
can be found in [3].

5. RESULTS
We will now show the results of our analysis of the behavior

of a set of popular apps that include WhatsApp, WeChat,
Viber, Skype, Gmail, Line, and Facebook. Our experiments
confirm that these applications send packets and RRC state
transitions take place even when they are in the background
and the device screen is switched off [9]. Figures 2 and 3
show for each application the box plots3 of energy/byte and
time to state promotion, respectively. The applications were
evaluated in isolation. Each box summarizes data points

3http://www.mathworks.in/help/stats/boxplot.html

0 5 90 120 150

20
40
60
80

100
120

350

Time to State Promotion(sec)

E
ne

rg
y/

B
yt

e(
m

J/
B

yt
e)

Skype
LineGmail

Viber WhatsApp
Wechat

Facebook

ICMP Attack

SYN Attack

Figure 4: A scatter plot of energy/byte and TSP for
all evaluated applications. Viber is the least efficient
and its behavior lies in the energy inefficient and high
signaling load quadrant. Line is the most efficient and
its behavior falls in the energy efficient and low signaling
load quadrant. Note the breaks in the axes.

obtained from about 100 measurement windows. Note that
Skype is about twice as energy efficient (in the background)
as compared to the applications Viber, WhatsApp and Face-
book. Not surprisingly, the SYN Attack has the worst energy
efficiency. Now consider the time to state promotion of the
applications in Figure 3. The range of TSP values for Skype,
Viber, WhatsApp, and Facebook. However, the median for
Viber is about twice as large as that of Skype, WhatsApp
and Facebook.
While the box plots show the spread of each of the met-

rics, the scatter plot in Figure 4 helps us place each of the
applications into one of the behavior quadrants shown in
Figure 1. For each application, the scatter plot shows the
average energy/byte and average TSP. All our observations
about application behavior are relative to the set we evalu-
ated. Also, remember that the behavior being evaluated is
of when the application is running in the background. The
application Line is amongst the most energy efficient and
also leads to minimal signaling overheads in the network. For
our set of applications, Line certainly lies in the lower right
quadrant of Figure 1. It has the most desirable behavior.
Gmail is not very far from Line and can be placed in the
same quadrant. Skype is very energy efficient but leads to
larger signaling overheads in comparison to Gmail and Line.
It fits well in the lower left quadrant, which groups applica-
tions that are energy efficient but lead to signaling overload.
Viber is energy inefficient and also causes signaling overload.
WhatsApp is very similar in performance to Viber. For our
set, both Viber and WhatsApp lie in the upper left quad-
rant of energy inefficiency and signaling overload. Finally,
WeChat and Facebook could be placed in either the upper
left or the lower left quadrant. While both lead to signaling
overload, their energy inefficiency is borderline. Finally, our
mock malicious applications are, as expected, well inside the
upper left quadrant. Proximity to such behavior can be an
indicator of the application being malicious.

Behavior when groups of applications are installed
together: Measuring application behavior in isolation helps
us compare applications and flag those with undesirable
behaviors. Our preliminary investigation shows that the
effect of an application that has undesirable behavior can
be detected even when it is installed with others. This is
encouraging as it may not always be possible to measure
applications in isolation. Note that the tool has no way of
knowing the origin application of a captured packet and there-
fore cannot know which application caused a state promotion.

56

Table 1: Average energy/byte for groups of applications

Groups Average
of Energy/Byte

Applications (mJ/Byte)
Actual Δ

Gmail+Skype+Line (Baseline) 57.53 —
Gmail+Skype+Line+Viber 82.50 24.97

Gmail+Skype+Line+WeChat 72.57 15.04
Gmail+Skype+Line+WhatsApp 85.68 28.15

Gmail+Skype+Line+Attack App 1 131.10 73.57

Table 2: Average TSP for groups of applications

Groups Average
of TSP

Applications (seconds)
Actual Δ

Gmail+Skype+Line 87.39 —
Gmail+Skype+Line+Viber 44.82 -42.57

Gmail+Skype+Line+WeChat 45.83 -41.56
Gmail+Skype+Line+WhatsApp 44.30 -43.09
Gmail+Skype+Line+SYN Attack 3.16 -84.32

The group containing the applications Gmail, Skype, and
Line are used as a baseline. We quantify the effect of adding
an application to this group. We will add more applications
to the set in future.

Table 1 shows the average energy/byte measured for differ-
ent installed groups of applications. The left column under
the heading energy/byte tabulates the actual average en-
ergy/byte values. The right column tabulates the increase
(Δ) in energy/byte when each of Viber, WeChat, WhatsApp,
and SYN Attack, are added to the baseline. The energy
inefficiencies of Viber, WhatsApp, and SYN Attack emerge
clearly. SYN Attack leads to a much larger increase than
Viber and WhatsApp, which lead to about the same Δ. This
is in line with the observations made for them when they were
evaluated in isolation (see Figure 4). Here, it is important
to keep in mind that energy/byte values of individual apps
are not additive. It is not possible to obtain the energy/byte
value of a collection of apps by summing up the values of
all the apps in the collection. The important point here is
that an app, which shows inefficient behavior individually,
brings down the performance of the whole group in which
it executes. Finally, Table 2 shows the average TSP. The Δ
values are inline with expectations set by the scatter plot in
Figure 4.

6. RELATED WORK
Previous works to measure RRC parameters observed in

UMTS networks have mainly focused on developing mathe-
matical models or adopting indirect techniques to infer the
RRC state. The authors in [7] use round trip times of data
packets to infer the RRC state. They validate their results
by comparing the actual energy consumption of the device
in inferred state to the expected consumption in that state.
In [8] a tool called ARO (Application Resource Optimizer) is
introduced, which uses a simulation-based approach to infer
RRC states from packet traces collected on the handset. It is
further used to study the inefficiencies of some popular An-
droid apps. Authors in [9] investigate the trade-off between
battery efficiency for the end user and signaling load on the
side of network operators by studying the behavior of some
popular apps. They too attempt to detect the RRC states
by using an inference algorithm. In a much recent work [10]
however, the authors presented a novel crosslayer analysis

tool - RILAnalyzer, which enables to accurately gather and
correlate control plane and user plane events on Android
handsets. Currently the tool is supported on rooted Android
devices with only Intel/Infineon XGold chipsets.
While the techniques listed above have helped to explore

the inefficient use of radio resources caused by badly designed
applications, we also bring to the fore, via mock malicious
applications, a possible exploitation of vulnerabilities in RRC
state transition machine to cause intentional deterioration in
the network performance. For more details on related work,
please refer to the technical report[3].

7. CONCLUSIONS AND FUTURE WORK
The tool and framework we have proposed can guide ap-

plication developers toward designing efficient applications.
Comparisons with similar applications are also made easy.
End users can use the tool to track down applications that
take an undesirable toll on the phone’s battery and that
too when not being actively used. Last but not the least,
mobile network operators can use the tool to track behavior
of popular applications. We plan to analyze the behavior of
a very large number of applications. To achieve this, we are
working toward automating evaluating the behavior of any
application in the Android marketplace.

In summary, our contributions are as follows. We proposed
a general framework that helps classify applications based on
their background behavior and its effect on the network. We
used the metrics of energy/byte and time to state promotion.
We developed a tool that can log packet activity and RRC
state information on an Android phone. The tool is easy
to use and is developed using open source libraries. We
showed via example popular applications the ability of the
tool and the framework to distinguish between behaviors of
applications that have similar use cases. We showed that
behavior analysis of an application need not be done in
isolation. Finally, we demonstrated the possibility of using
the framework to detect malicious applications.

8. REFERENCES
[1] http://www.digipassion.com/2012/11/samsung-android-

mobilephone-secret-codes.html.

[2] A. Gupta, T. Verma, S. Bali, and S. Kaul. Detecting ms
initiated signaling ddos attacks in 3g/4g wireless networks.
COMSNETS, January 2013.

[3] S. Gupta, R. Garg, N. Jain, V. Naik, and S. Kaul. Android
phone based appraisal of app behavior on cell networks.
Technical Report IIITD-TR-2013-003, IIIT-Delhi, October
2013.

[4] H. Holma and A.Toskala. WCDMA for UMTS: Radio Access
for Third Generation Mobile Communications. John Wiley
and Sons Inc., New York,USA, 2004.

[5] Libpcap documentation. http://www.tcpdump.org.

[6] M. Paolini and S. Fili. The taming of the app. Sponsored
By:Seven Networks(http://www.seven.com/), 2013.

[7] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. Characterizing radio resource allocation for 3g
networks. ACM SIGCOMM, November 2010.

[8] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. Profiling resource usage for mobile applications:
a cross-layer approach. ACM Mobisys, July 2011.

[9] C. Schwartz, T. Hossfeld, F. Lehrieder, and P. Tran-Gia.
Angry apps: The impact of network timer selection on power
consumption, signalling load, and web qoe. Journal of
Computer Networks and Communications, 2013(176217),
February 2013.

[10] N. Vallina-Rodriguez, A. Aucinas, M. Almeida,
Y. Grunenberger, K. Papagiannaki, and J. Crowcroft.
Rilanalyzer: a comprehensive 3g monitor on your phone. ACM
Internet Measurement Conference (IMC 2013), October 2013.

57

