
Detecting MS Initiated Signaling DDoS Attacks in
3G/4G Wireless Networks

Aman Gupta*, Tanmay Verma*, Soshant Bali, Sanjit Kaul
IIIT Delhi, India

Abstract—The hierarchical architecture of present day cellular
data networks implies that a large number of base stations
depend on a small number of core network elements for essential
services (including Internet connectivity). If a mobile botnet
launches a distributed signaling attack on one or more core
network elements (e.g., gateway), a large number of subscribers
would experience service degradation. In this work, we propose
a new detector that examines a subset of IP packets transmitted
by a mobile station (MS) to determine its infection status. Service
providers can install this detector anywhere in the data path, i.e.,
MS, Base Station (BS), gateway, etc., to detect and quarantine
infected terminals. The proposed algorithm was trained using one
week of IP packet traces generated by 62 different smartphones.
Results indicate that this method can detect most types of
signaling attacks with more than 0.9 detection probability and
less than 0.1 false alarm probability.

I. INTRODUCTION

Present day cellular wireless data networks (like LTE,

HSDPA, EVDO etc.) have evolved from their voice only

ancestors (like GSM, IS-95, etc.) and as a result the legacy

hierarchical architecture can still be seen in today’s 3G/4G

networks. In this architecture, a large number (thousands)

of base stations (BS) are controlled by a few elements like

radio network controllers (RNC) and core network gateways

(like PDSN, ASN-GW, GGSN, P-GW, etc.). For example, one

PDSN and five RNCs may provide EVDO connectivity to the

entire San Francisco Bay Area, that has several hundred base

stations. This hierarchy implies that an attacker can degrade

service to a large city by attacking just one (or a few) core

network elements, like gateway or RNC [1], [7].

Whenever a mobile station (MS) authenticates with the

network, requests an IP address, reserves or relinquishes the

traffic channel, performs handoff to another BS, requests QoS

flows, etc., it exchanges several signaling messages with the

core network gateway. In addition, all Internet traffic destined

to (or arriving from) the MS traverses the core network

gateway. Most gateways use specialized network processors or

application specific integrated circuit (ASIC) chips to forward

IP data traffic (fast path). However, the signaling traffic is

handled by the gateway’s CPU (slow path) because the amount

of computational logic required to handle these requests is

significant [12]. The same CPU is typically also the central

manager that controls other gateway functions, like master-

slave state synchronization, network processor forwarding

table programming, slave health monitoring, etc [12]. As a

result, a temporary increase in signaling message volume

can overload the gateway’s CPU and paralyse it by delaying

essential time-critical management tasks. This delay may cause

serious problems in the gateway, which may eventually lead

to a temporary Internet outage in a large geographic region

[1], [7], [11]. To avoid this scenario, Gateways are typically

equipped with signaling rate limiters that drop signaling mes-

sages when their arrival rate is very high [12]. Even though

this protects the CPU, many signaling messages are dropped,

resulting in user-perceived impairments. For example, when a

mobile subscriber’s handoff requests are dropped by the rate

limiter, it loses Internet connectivity when it moves closer to

the new BS.

A number of signaling messages are exchanged between the

mobile station (MS) and the access network (AN) whenever

a traffic channel is established (STANDBY to READY state

transition) or released (READY to STANDBY state transition).

For example, in UMTS networks, MS and AN process at least

20 signaling messages whenever the channel is established or

released [1]. The MS requests a traffic channel whenever its

send buffer has one or more packets queued for transmission,

and releases it when no packets are sent or received for

some time (timeout of T sec). One can envision a malicious

application that sends an IP packet once every T + δ (δ < 1

sec) just to increase the control signaling volume. If this

behavior is the characteristic of a self propagating worm that

spreads to a large number of mobile hosts, this botnet can

launch a signaling attack on the core network gateway (at the

command of a botmaster) and degrade connectivity in a large

city [14], [15]. A naive attack detector would be one that

checks the signaling rate of each MS and triggers an alarm

if this rate is above some fixed threshold for a long enough

period of time (e.g., using CUSUM detector [1]). However,

since signaling rate is a function of usage and operating system

(Android v/s IPhone v/s Symbian) [13], this simple fixed-

for-all threshold detector would probably misclassify a heavy

user as an attacker. Alternatively, a more sophisticated detector

can examine IP packets to infer the presence of a malicious

signaling attack application. We propose one such detector

in this paper which, for scalability reasons, examines header

information of only a fraction of all IP packets generated by a

MS to infer the presence of a signaling attack application.

This detector can be installed anywhere in the data path,

e.g., the mobile handset, base station, gateway, deep packet

inspection (DPI) system, etc. The proposed features compare

*The authors contributed equally to this work978-1-4673-5494-3/13/$31.00 c© 2013 IEEE

fields in IP packet headers to determine if the packets are

unusually similar (or unusually dissimilar) to each other. If

packet similarity appears very uncharacteristic of a normal

MS, then the MS that generated this traffic is classified as

an attacker.

The classifier was trained using one week long IP traffic

traces collected from 62 different smartphones (23 Android,

6 Nokia, 5 iPhone, 2 Windows Mobile, 5 Samsung Bada

1 Blackberry, 20 unidentified) that belong to undergraduate

university students. These traces were used to form labeled

training samples of normal MS. For malicious MS, since our

search for an existing signaling attack application did not yield

any results, we were compelled to generate our own attacks.

We generated 7 different types of attacks to train and test our

system and the results were very encouraging in most cases.

The detector when trained using a particular type of attack

was tested using both the same type of attack and a different

type of attack for which it had no prior training. The observed

performance was fairly good in both cases.

II. RELATED WORK

Signaling DoS attacks for 3G/4G networks have been dis-

cussed in [1], [3], [4], [5], [6], [7], [10]. Unlike the MS

initiated signaling DOS attack proposed in our paper, the

attack in [1] is launched from a host in the Internet. The attack

program sends small sized IP packets from the Internet host to

a large number of MS, causing many of them to transition from

STANDBY to READY mode. This can dramatically increase

the core network signaling load resulting in network wide

service degradation. However, this attack cannot be launched

in many (103 out of 180 [7][8]) 3G/4G networks due to the use

of Network Address Translation (NAT). A NAT proxy only

allows incoming packets that arrive in response to a recent

outgoing packet. Unsolicited incoming packets are rejected

because the NAT proxy does not have any destination port to

private IP mappings for such packets. Although the primary

reason for deploying NAT is the shortage of unused IPv4

addresses, an accidental outcome is automatic protection from

network initiated signaling DoS attacks [7]. In systems that

are not protected with NAT, an Internet based attacker must

obtain IP addresses and locations of mobiles to orchestrate a

signaling DoS attack. This problem was addressed in [6] and

it was shown that it is possible to identify a sufficient number

of IPs to launch an attack at a particular location.

The attack proposed in [7] is also network initiated, just

like the one discussed in [1], wherein the attacker uses up

all Temporary Flow Identifiers (TFI) of base stations under

attack to deny service to mobiles in their coverage area. It

was shown that an attacker needs just 200 Kbps bandwidth to

degrade service in an area the size of Manhattan. The same

attack method can also be used to deny service by congesting

the PRACH channel [7]. This attack was also discussed in [3]

along with several other types of signaling DoS attacks that

are possible in cellular networks. A similar attack, which can

also be launched from an Internet host, can deny service to

legitimate users by congesting the paging channel [10].

T sec

w
1 w

k

ss
1 se

1
ss

k
se

k

d
1

d
k

w
1

w
2 w

3
w

4 w
5

w
6

w
1

w
2

w
3

w
4 w

5 w6
w

7
w

8
w

9
w

10 w11
w

12

Infected MS

Normal MS

STANDBY READY

Fig. 1. First timeline shows wake-up packets (wi) in red color. Wake-
up packets are packets that cause MS to transition from STANDBY to
READY mode. Signaling messages (ssi and sei) are generated whenever
MS transitions from STANDBY to READY mode (or vice versa). Wake-up
packets are immediately followed by normal IP data packets (di). Second
timeline illustrates wake-up packets generated by a mix of applications
installed on a typical MS. Third timeline illustrates increased wake-up activity
due to the presence of a rogue application.

III. DETECTION METHODOLOGY

We define a wake-up packet as an IP packet whose arrival

triggers the mobile station to transition from STANDBY mode

to READY mode (see Figure 1). The MS is in STANDBY

mode in the time period immediately preceding the arrival

of any wake-up packet (by definition). Every wake-up packet

is preceded by a time period of at least T sec (STANDBY

timeout) when no IP packets are exchanged. A wake-up packet

is either a downlink (Internet to MS) or uplink (MS to Internet)

IP packet. A mobile based worm increases uplink wake-up

packet initiated signaling, whereas, a Internet based port-scan

increases downlink wake-up packet initiated signaling. Since

we are only interested in detecting MS based worms (or rogue

applications), downlink wake-up packets were ignored in this

study. We examine selected features of uplink wake-up pack-

ets, like their frequency, destination IP, destination port, length,

etc., to detect signaling DOS attacks. Our detection algorithm

is based on the hypothesis that wake-up packets generated

by a rogue application have a peculiarity that differentiates

them from normal wake-up packets generated by a mix of

applications installed on a typical MS.

Given a IP packet data set, which includes a series of n con-

secutive uplink wake-up packets generated by a particular MS,

our objective is to classify this MS as normal or malicious.

The list of features and a method for training the classifier are

discussed below. The values of all the features listed below are

determined from a data set of n consecutive wake-up packets

and their responses.

A. Feature vector

1) Normalized destination IP entropy: If destination IP of

wake-up packets is a random variable, then it is expected

that the uncertainty associated with destination IPs chosen

by an attacker will differ from that of a typical MS. For

example, when an attacker sends ping wake-up packets to

a fixed destination every few seconds, uncertainty associated

with destination IPs is expected to be much lower than that

of regular wake-up traffic. Alternatively, if the attacker pings

random destination IPs, the uncertainty is expected to be

unusually high. Let k be the number of unique destination IPs,

and pi the probability of observing IP i, then the normalized

destination IP entropy is calculated as follows.

H0 =
H

Hmax

=
−
∑k

i=1
pi ln pi

ln k
(1)

2) Normalized destination port entropy: The value of this

feature is also obtained using Equation 1, wherein, k is the

number of unique destination ports and pi is the probability

of observing destination port i in the wake-up packet trace.

It is expected that the uncertainty of destination ports in the

attack traffic will either be unusually high or unusually low.

Destination port entropy is used as a feature here because it

quantifies this uncertainty.

3) Normalized source port entropy: Similarly, the value

of this feature is also obtained from Equation 1. The same

argument on quantifying the uncertainty holds here as well.

4) Normalized packet length entropy: The value of this

feature is obtained in the same way as features 1, 2 and 3

and for the same reasons as well.

5) Normalized wake-up rate: An attack application is ex-

pected to increase the MS wake-up rate and an increased rate

for a prolonged period of time is indicative of the presence

of a malicious application. The wake-up rate is calculated by

finding the (exponential) average rate of n consecutive wake-

up packets transmitted by the same MS. This wake-up rate is

normalized by dividing it by the maximum possible wake-up

rate of 1/T .

6) Variance of inter wake-up times: If an attack application

generates IP packets with a constant inter-arrival times, the re-

sultant unusual periodicity of wake-up packets can be detected

using variance of inter wake-up times. Normal wake-up traffic

is not periodic and has higher variance than periodic attack

traffic.

7) Response-request ratio: If the attack application sends

wake-up requests to random IP addresses, all of these des-

tination hosts are unlikely to respond, thus shrinking the

average response-request ratio to an usually low value. Typical

applications on the other hand communicate with legitimate

hosts that respond to these requests.

B. Supervised Learning

The training data was extracted from one week long trace

of IP packets generated by a set of 62 smartphones. It was

assumed that none of these smartphones were infected with a

connection state signaling worm/application. We believe that

this is a valid assumption because to the best of our knowledge

such an application does not exist. Training data for the two

classes, i.e., normal MS and Malicious MS, was obtained as

follows.

1) Normal MS: Given a window size n (e.g., n = 50), a set

of n consecutive wake-up packets transmitted by a smartphone

were used to form one labeled sample feature vector. If a

smartphone transmitted less than n wake-up packets during the

one week measurement period, then all of these samples were

ignored. However, if a smartphone transmitted at least m× n
wake-up packets (m is an integer) during the measurement

period, then m labeled sample feature vectors were extracted

for this MS.

2) Malicious MS: Since attack traffic samples are not avail-

able, we wrote our own attack application and collected pcap

traces for 6 different types of attacks. The attack application

was installed on a Linux server and all packets exchanged

by this application were captured in the pcap file. The attack

pcap was then merged with the one week long pcap of packets

exchanged by an actual smartphone. When merging, the IP

address of Linux server (attacker) was replaced with that of the

smartphone, and timestamps in the attack trace were changed

so that the attack traffic was interleaved with smartphone

traffic. This merging was necessary to emulate the scenario

where a rogue application resides on the MS, and the MS

sends attack traffic in addition to the normal traffic generated

by a regular mix of applications. Wake-up packets were then

extracted from the merged pcap by locating IP packets that

immediately follow a silence period longer than 5 seconds

(STANDBY timeout value T is assumed to be 5 seconds).

Each of the 6 attack traces were then merged with each of the

62 MS traces, resulting in 6 × 62 wake-up traces. All traces

that had less than n wake-up packets were then removed. If a

trace had more than m×n wake-up packets (m is an integer)

then m labeled feature vectors were extracted from the trace.

Let b be the number of feature vectors that are labeled

“normal MS” (b is a function of n and the data size). Since we

generated a large number of attack packets, number of feature

vectors labeled “malicious MS” were typically larger than b.
Exactly b feature vectors were randomly selected from the set

of all feature vectors labeled “malicious MS” (to avoid bias).

This way, 2b labeled samples were available to train and test

the support vector machine (SVM) classifier.

We decided to use SVM because it is a discriminating,

inherently non-linear (when kernel is applied) approach and

there is no need to make assumption of data parameters (distri-

bution parameters) [9]. Moreover, since SVM solves a convex

optimization problem, the decision boundary is consistent and

there is no danger of converging to local minima, as is with

other classifiers such as Neural networks. Supervised learning

is used in this work as proof of concept and the performance

of SVM may further improve with better parameter search.

TABLE I
BASIC ATTACK TYPES

Attack Prot. D. IP D. Port S. Port Len. Time
A1 R R R R R R1
A2 TCP S F S 0 R2
A3 ICMP F - - F F(60s)
A4 TCP F R F 0 R2
A5 UDP S F R R F(100s)

IV. RESULTS

A. Data Sets

Measurement data set DN includes one week of mobile

phone traffic generated by 62 smartphones. We installed a

traffic sniffer at the University edge router and captured all

packets sent or received by these 62 mobiles phones over a

period of one week. Note that the sniffer did not capture any

packets when the students who own these smartphones were

off campus (e.g. at night). To account for this, all inter wake-

up times longer than 8 hours were removed from the analysis.

However, when the students were on campus, we believe that

all traffic generated by their smartphones was captured in our

traces. In India, 3G plans are still very expensive and most

students do not enable 3G on their phones. Instead the students

prefer to stay connected to the University WiFi network when

they are on campus.

We generated 5 different types of attacks, {A1, A2, ..., A5}
(see Table I for details), using a custom made attack ap-

plication. Each attack pcap was then merged with data set

DN to yield the data set DAi (i ∈ {1, 2, ..., 5}). Each of

the 5 merged data sets DAi, has 62 attack traffic samples,

one from each user. The details of the 5 different attacks are

listed in Table I. Here, R represents random, S is short for

set, and F represents fixed. As an example, in attack 1, the

malicious application sent TCP, UDP or ICMP packets that

had random destination IPs, destination ports, source ports,

and length. Packet inter-arrival times were obtained from a

two state markov chain, the two states being “Low Rate” and

“High Rate”. For attacks with inter-arrival times labeled R2,

when the system is in “Low Rate” state, inter-arrival times

are uniformly distributed between 90 sec and 110 sec (50 sec

and 70 sec for R1), and when the system is in “High Rate”

state, inter-arrival times are uniformly distributed between 5

sec and 15 sec (5 sec and 15 sec for R1). When in a state, the

probability of staying in that state is 0.95 and the probability

of transitioning to the other state is 0.05. As another example,

attack 2 was a TCP SYN attack, where the TCP packets had

fixed source and destination ports, the payload length was

0, and inter-arrival times were random (from markov chain

model). The destination IPs were randomly drawn from a set

of ten responsive IPs (e.g., google.com). Attack 5 consisted of

IP packets with destination UDP port 53 (DNS) sent to one

of the commonly used DNS servers (e.g., google DNS).

In another type of attack (A6), our malicious program

established a TCP connection with a web server and retrieved

the webpage using linux wget. The inter wget time was

0.05 0.1 0.15 0.2 0.25 0.3 0.35

10
0

10
5

V
a

ri
a

n
c
e

Normalised wake−up rate

No Attack
A3
A2

Fig. 2. Features wake-up rate and variance of inter wake-up times for normal
MS traffic and for attacks A2 and A3 (n = 50 for all values in this graph)

determined using the two state markov chain model described

above. In “high rate” state the inter-arrival times were uniform

between 5 sec and 15 sec, and in “low rate” state the inter-

arrival times were uniform between 50 sec and 60 sec. Web

server was randomly selected from a list of ten well known

websites (e.g., facebook.com). The resultant attack pcap was

then merged with the 62 users’ pcap to form data set DA6.

B. Feature Vector

Figures 2, 3 and 4 illustrate the values of various features

for several different types of attacks. The “No Attack” data

shown in Figure 2 is from the data set DN , i.e., original trace

without any attacks. Both variance and rate span over a large

range of values, as expected, because different users exhibit

different and random usage behavior. Most of the attack A3

samples are clumped in the lower left corner of the graph.

The low values of variance and fixed value of rate can be

explained by the fact that inter-packet time was a constant

value (60 sec) in attack A3. Some of the samples from attack

A3 have higher variance because attack packets were mixed

with normal user traffic. Clearly none of these higher variance

samples should have a wake-up rate smaller than the attack

rate of 1/60. In attack A2, wake-up rate spans a large range of

values because the value of inter packet time was determined

using a two state markov chain. Similarly, the “No Attack”

data spans a large range of destination IP and destination port

entropy values, as seen in Figure 3. Since attack A4 uses

fixed destination IP and random destination port, normalized

IP entropy is low and normalized port entropy is high. On

the other hand, attack A1 has high values for both entropies

because both destination IP and destination port were random.

Similarly, Figure 4 illustrates the features source port entropy

and packet length entropy. Attack A1 has high values of packet

length entropy and source port entropy because both values

are random. On the other hand, since both source port and

packet length are fixed in attack A4, both entropies have values

smaller than one.

C. Performance Evaluation

Given the normal MS data set DN , the first step was to

extract wake-up packets for each of the 62 MS. Let bi be

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N

o
rm

a
liz

e
d

 d
e

s
ti
n

a
ti
o

n
 p

o
rt

 e
n

tr
o

p
y

Normalized destination IP entropy

No Attack

A4

A1

Fig. 3. Features normalized destination IP entropy and normalized destination
port entropy of wake-up packets for normal MS traffic and for attacks A1 and
A4 (n = 50 for all values in this graph)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Source Port Entropy

N
o

rm
a

liz
e

d
 L

e
n

g
th

 E
n

tr
o

p
y

No Attack

A4

A1

Fig. 4. Features normalized source port entropy and normalized length
entropy of wake-up packets for normal MS traffic and for attacks A1 and
A4 (n = 50 for all values in this graph)

the total number of segments from user i, where segment is

defined as a set of n consecutive wake-up packets. There are

a total of bs segments in the data set, where, bs =
∑

62

i=1
bi.

These bs segments are used to calculate bs feature vectors

labeled “Normal MS”. Similarly, for any attack data set (e.g.,

DA1), each user i has ai segments, and there are a total of as
segments. These as segments are used to calculate as feature

vectors labeled “Malicious MS”. In our data sets, as was

always greater than bs, and to remove the training bias, bs
segments were randomly selected from the as attack segments

and used for training and classification. K-fold cross validation

was then used, wherein, 2bs−k out of the 2bs labeled feature

vectors were used to train the classifier, and the remaining

k were used to test the classification accuracy. It is clear

from the evaluation results shown in Figure 5 that the detector

correctly identifies more than 90% of the attack segments as

attacks, in all of the six different attack types. Moreover, less

than 10% of the normal traffic segments are misclassified as

attack segments. The probability of detection of attacks A4

and A6 is slightly better than all other attacks. This can be

explained by the fact that A4 uses fixed source ports and A6

uses fixed destination port. Probability of detection of attack

5 is slightly worse than all other attacks, probably because of

the low transmission rate.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Probability of Detection
Probability of False Alarm

Fig. 5. Probability of detection and false alarm for various attacks. Window
size n = 50 and k = 5 (k-fold cross validation)

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Attack Type

P
ro

b
a
b
ili

ty

Probability of Detection

Probability of False Alarm

Fig. 6. Detector performance when the classifier has not been trained to
detect the attack under evaluation (n was fixed at 50 samples)

TABLE II
PERFORMANCE AS A FUNCTION OF ATTACK RATE FOR ATTACK A4

Rate [5,15]. [35,45] [75,85] [115,125] [135,145]
Mean PD 1 1 1 1 1
Std. PD 0 0 0 0 0

Mean PF 0.0028 0.0024 0.0032 0.0029 0.0029
Std. PF 0.0063 0.0054 0.0072 0.0066 0.0064

One of the criticisms of the above approach is that the

classifier was already trained for the attack that it detected.

However, it may not always be possible to anticipate and

train the classifier in advance for all types of attacks. We

conducted an experiment to understand the performance when

the detector hasn’t been trained for the attack under evaluation.

When testing the performance w.r.t. a particular attack, the

detector was trained using all (five) other attacks except the

attack under evaluation. It is clear from the results in Figure

6 that the performance drops significantly when the classifier

has no prior training about the attack. However, attacks A4

and A6 were detected with very good performance without

any prior training. This may be because both these attacks are

very similar to each other and a classifier trained with just one

of the two attacks could work well with both attacks.

We conducted another experiment to understand the effect

of packet rate on detector performance. Table II illustrates

detector performance as a function of the attack rate. We

generated five new attacks of Type A4 and changed the packet

rate in each attack. The inter-arrival times were uniformly

distributed with low and high limits listed in Table II. Both

detection probability and false alarm probability were found to

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Fraction of segments marked as attack (x)

F
(x

)

Empirical CDF

Fig. 7. CDF of the fraction of segments correctly marked as attack

be independent of the attack rate. This performance is slightly

better than the one reported in Figure 5 because inter-arrival

times had higher variation (markov chain) in the latter case.

In another experiment, the classifier was trained using

labeled samples from 50% of the users. Data segments from

each of the remaining users were then tested for the presence

of an attack. Let attack user i have a total of ai segments, then

if x% of these ai segments were correctly marked as an attack,

then we note the number x against user i. This procedure was

repeated multiple times to obtain the CDF shown in Figure

7. It is clear that more that 80% of segments were correctly

identified as an attack 40% of the time, and more than 30%

of the of the segments were correctly identified 90% of the

time.

Since most of the attacks in our initial attack set were

detected with reasonably good accuracy, we designed a more

sophisticated attack that attempts to evade detection by re-

playing previously transmitted packets. Since the attack traffic

looks exactly like legitimate traffic, it would be difficult for

the system to detect this attack. The malicious application

first captures all packets transmitted by its host MS for some

period of time (e.g., one hour). It then starts replaying the

captured packets in the background effectively doubling the

MS initiated wake-up rate. As new user packets are generated,

the malicious application keeps appending these packet to

its replay-able pcap file, and replays them at an appropriate

playback time. We generated this attack by replaying data files

generated by each of the 62 different MS. The classifier was

trained using the 6 attacks A1 through A6, with the hope that

it would be able to detect the packet replay attack. However,

our detector failed miserably, with a detection probability of

0.538 and false alarm probability of 0.492.

V. CONCLUSION

The main contribution of this work is a new method for

detecting MS initiated signaling DoS attacks from IP packet

traces. This method examines characteristics of wake-up IP

packets to infer the presence of a malicious application. The

classifier was trained and tested using 6 different types of

attacks and the performance was found to be very good for

all 6 attacks. The classifier was even tested with attacks for

which it had no prior training and again the performance was

satisfactory. Finally, the classifier was tested with a packet

replay attack, and the detector failed to detect this type of

attack.
Service providers can protect their network by installing

a system based on this classifier anywhere in the data path,

i.e., MS, base station, gateway, etc. The classifier can identify

and report the infected mobile stations in near real-time. The

infected MSs can be quarantined using several methods, e.g.,

Mobile Equipment ID (MEID) blocking in Home Subscriber

Server (HSS), Mobility Management Entity (MME) initiated

network detach [16], etc.

ACKNOWLEDGMENT

The authors would like to thank Shweta Sachan and Anoop

Singh for facilitating this project; and Kuldeep Yadav, Samarth

Bharadwaj, Pandarasamy Arjunan, for their input and com-

ments.

REFERENCES

[1] Patrick P. C. Lee, Tian Bu, Thoma Woo, On the Detection of Signaling
DOS Attacks on 3G Wireless Networks, IEEE INFOCOM, 2007

[2] K. Wang and S. Stolfo, Anomalous payload-based network intrusion
detection, Proceedings of Recent Advance in Intrusion Detection (RAID),
Sept. 2004.

[3] Fabio Ricciato, Angelo Coluccia, Alessandro DAlconzo, A review of DoS
attack models for 3G cellular networks from a system-design perspective,
Computer Communications, 33 (2010) 551558.

[4] Patrick Traynor, Michael Lin, Machigar Ongtang, Vikhyath Rao, Trent
Jaeger, Patrick McDaniel and Thomas La Porta, On Cellular Botnets:
Measuring the Impact of Malicious Devices on a Cellular Network Core,
CCS09, November 913, 2009, Chicago, Illinois, USA.

[5] Zhizhong Wu, Xuehai Zhou, Feng Yang, Defending against DoS Attacks
on 3G Cellular Networks Via Randomization Method, 20IO International
Coriference on Educational and Information Technology (ICEIT 2010)

[6] Zhiyun Qian, Zhaoguang Wang, Qiang Xu, Z. Morley Mao, Ming Zhang,
Yi-Min Wang, You Can Run, but You Cant Hide: Exposing Network
Location for Targeted DoS Attacks in Cellular Networks, In Proceedings
of 17th Annual Network and Distributed System Security Symposium
(NDSS) 2012, San Diego, CA

[7] Patrick Traynor, Patrick McDaniel and Thomas La Porta, On Attack
Causality in Internet-Connected Cellular Networks, In Proc. of USENIX
Security, 2007.

[8] Zhaoguang Wang, Zhiyun Qian, Qiang Xu, Z. Morley Mao, Ming Zhang,
An Untold Story of Middleboxes in Cellular Networks, SIGCOMM11,
August 1519, 2011, Toronto, Ontario, Canada.

[9] Chang, Chih-Chung and Lin, Chih-Jen, LIBSVM: A library for support
vector machines, ACM Transactions on Intelligent Systems and Technol-
ogy, Vol. 2, No. 3, 2011, pp. 27:1–27:27

[10] J. Serror, H. Zang, and J. C. Bolot, Impact of Paging Channel Overloads
or Attacks on a Cellular Network, In WiSe, 2006.

[11] Patrick P. C. Lee, Tian Bu, and Thomas Woo, ”On the Detection of
Signaling DoS Attacks on 3G/WiMax Wireless Networks,” Computer
Networks, Elsevier, 53(15), pp. 2601-2616, October 2009.

[12] Tellabs Smartcore 9100 WIMAX gateway,
http://www.tellabs.com/solutions/mobilepacketcore/

[13] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lym-
beropoulos, Ramesh Govindan, Deborah Estrin, ”Diversity in Smartphone
Usage,” MobiSys10, June 1518, 2010, San Francisco, California, USA.

[14] Traynor, Patrick and Lin, Michael and Ongtang, Machigar and Rao,
Vikhyath and Jaeger, Trent and McDaniel, Patrick and La Porta, Thomas,
On cellular botnets: measuring the impact of malicious devices on a
cellular network core, Proceedings of the 16th ACM conference on
Computer and communications security, CCS 2009, Chicago, Illinois,
USA.

[15] Collin Mulliner and Jean-Pierre Seifert, Rise of the iBots: 0wning a
telco network, 5th International Conference on Malicious and Unwanted
Software (MALWARE), 19-20 Oct. 2010, Nancy, Lorraine

[16] 3GPP Technical Specification 23.401, General Packet Radio Service
(GPRS) enhancements for Evolved Universal Terrestrial Radio Access
Network (E-UTRAN) access (Release 11)

