
TCP Download Performance in Dense WiFi
Scenarios: Analysis and Solution

Mukulika Maity, Bhaskaran Raman, and Mythili Vutukuru

Abstract—How does a dense WiFi network perform, specifically for the common case of TCP download? While the empirical answer

to this question is ‘poor’, analysis and experimentation in prior work has indicated that TCP clocks itself quite well, avoiding contention-

driven WiFi overload in dense settings. This paper focuses on measurements from a real-life use of WiFi in a dense scenario: a

classroom where several students use the network to download quizzes and instruction material. We find that the TCP download

performance is poor, contrary to that suggested by prior work. Through careful analysis, we explain the complex interaction of various

phenomena which leads to this poor performance. Specifically, we observe that a small amount of upload traffic generated when

downloading data upsets the TCP clocking, and increases contention on the channel. Further, contention losses lead to a vicious cycle

of poor interaction with autorate adaptation and TCP’s timeout mechanism. To reduce channel contention and improve performance,

we propose a modification to the AP scheduling policy to improve the performance of large TCP downloads. Our solution, WiFiRR,

picks only a subset of clients to be served by the AP during any instant, and varies this set of “active” clients periodically in a round-robin

fashion over all clients to ensure that no client starves. We have done extensive evaluation of WiFiRR in simulation and in real settings.

By reducing the number of contending nodes at any point of time, WiFiRR improves the download time of large TCP flows upto 3:5� of

our classroom scenario. We also compare WiFiRR with state-of-the-art prior work WiFox, WiFiRR improves download time by 2:25�
over WiFox.

Index Terms—Dense WiFi network, TCP download performance, channel contention, real setting, scheduler

Ç

1 INTRODUCTION

THE omni-presence of WiFi needs no justification. While
WiFi standards have improved significantly in terms of

raw bit-rate, whether this has translated to corresponding
improvements in application throughput is unclear. We are
specifically interested in dense user scenarios, such as con-
ferences, sports stadiums, and large classrooms, with the
latter two being especially nascent with respect to WiFi
usage. How does a dense WiFi network perform, specifi-
cally for the common case of TCP downloads? This is the
focus of our work.

Prior work has shown, both analytically [1], [2] and
experimentally [3], [4], that TCP download performance
does not degrade with increasing number of users in a
WLAN. These results are based on the performance of long
running TCP flows in controlled environments, using
homogeneous well-tested clients and artificial user traffic.
These studies have reported good TCP download perfor-
mance even with over a hundred clients [3].

In contrast, this paper presents a measurement study of
TCP performance “in the wild” over a dense WiFi network,
with real users running real applications over a variety of
client devices. We conduct several measurements in several
WiFi-enabled classrooms, where students download online
quiz questions and/or instruction material. Our results
show that, in contrast to prior work, TCP performance

degrades significantly in a dense usage scenario, even with
20-30 clients per access point. (We focus on a single WiFi
BSS, and do not address scaling issues across multiple inter-
fering BSSs.)

We have analyzed why our results differ from the TCP
download scenarios in prior research. With long running
TCP downloads, the only traffic on the network is TCP data
packets in the downlink and ACKs in the uplink. In such
cases, the number of contenting nodes on the channel is
usually quite low, because the AP alone transmits TCP data,
and only the clients that most recently received a data
packet are likely to contend for the channel to send an TCP
ACK. In contrast, in our real-life measurements, we found
significantly higher channel contention due to “chattiness”
of real applications that create a small but noticeable
amount of extra upload traffic besides TCP ACKs.

For example, in one of our classroom scenario, a student
logs in to the class webpage, authenticates herself, locates a
file to download on a webpage (that has several smaller
web objects in addition to the main object of interest), using
a browser that opens several parallel TCP connections to
download the content. In addition, users also have a low
volume of background traffic automatically generated by e-
mail clients and such. Somewhat surprisingly, this small
amount of extra traffic in the upload direction significantly
increases the contention on the channel (as the number of
active clients is now close to the total number of users),
resulting in collisions due to the CSMA MAC protocol’s
channel arbitration mechanism. As a result, we found that
TCP performance degraded severely, and students often
took more than 8� the amount of time to download the files
needed for an in-class quiz, as compared to a universe
where TCP scaled perfectly with increasing user density.

� The authors are with the Department of CSE, IIT Bombay, Mumbai,
Maharashtra, India. E-mail: {mukulika, br, mythili}@cse.iitb.ac.in.

Manuscript received 24 Aug. 2015; revised 5 Nov. 2015; accepted 25 Feb.
2016. Date of publication 10 Mar. 2016; date of current version 1 Dec. 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMC.2016.2540632

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 1, JANUARY 2017 213

1536-1233� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

We find that the contention on the wireless channel and
the resulting collision losses also have an undesirable effect
on several other protocols in the system. For example, we
observed that WiFi clients picked lower bit rates during
(and for a short period of time after) contention, because
most rate adaptation algorithms confuse collisions for chan-
nel losses. This lowering of rate increases the time taken for
subsequent transmissions, further increasing contention,
leading to a vicious cycle. Further, we observed poor inter-
action between channel contention and TCP’s timeout
mechanism. We found that the RTT of TCP flows was
highly variable due to contention losses, confusing the TCP
timeout algorithm, leading to spurious retransmissions.
Note that while prior work [5], [6], [7], [8], [9], [10] has also
observed some subset of these problems, our analysis has
focused on thoroughly identifying almost all factors that
contribute to poor TCP download performance in dense sce-
narios, and understanding their complex interplay.

We also observed that in practice, several device drivers
become unresponsive when operating under high contention
losses, and need a driver reset to function even after the con-
tention has subsided. All of these real-life effects further exac-
erbate the TCP performance issues in a dense setting. Note
that we have verified and eliminated other factors (AP buffer
mismanagement, wired network/server overload, external
interference) as possible causes for the poor performance.

Having identified excessive channel contention as the
root cause behind the performance issues, we propose a
solution, WiFiRR, to improve the performance of large TCP
downloads in dense WiFi scenarios. WiFiRR works as a
scheduler at the packet queue of an access point. WiFiRR
identifies a subset of clients as “active” during every instant
of time (up to five clients in our implementation), and the
AP serves downlink packets only to these clients. This
results in the other clients going quiet during this period,
leading to lower contention and improved performance.
This set of active clients is varied periodically (every 1.6 s in
our case) to cover all clients in a round-robin fashion, hence
the ‘RR’ in the name WiFiRR. Note that while clients may
temporarily be deprived of service for short durations, they
will eventually see improved performance over large TCP
downloads. We evaluate our solution in simulation and in
real experiments. In simulation, we emulate the classroom
browsing behaviour by creating our own ns-3 application
modules ChattyClient (client) and WebServer (server). Here,
WiFiRR improves TCP download time by 1:6� over the
base case. Next, we evaluate WiFiRR in real settings. We set
up a testbed of 15 clients connected to one 802.11n access
point. We emulate the browsing behaviour observed in
classroom by using a browser replacement tool i.e.,
Epload [11]. Here, WiFiRR improves TCP download time
by 2:4� over the base case.

We soon realized that our AP side solution of suppressing
downlink traffic in the view reducing uplink contention
might not be effective if the uplink traffic continues without
downlink traffic (for ex. TCP SYN retries). Thus to reduce the
client side chattiness even more we seek client side solution.
The newHTTP protocol, SPDY [12] helps in reducing the cli-
ent side chattiness. SPDY opens a single TCP connection for
downloading multiple web objects. This helps in reducing
the contention. We have evaluated SPDY both in simulation

and in real settings. We have found WiFiRR provides most
improvement when tried with SPDY compared to HTTP. In
simulation, HTTP+WiFiRR provides improvement of 1:6�,
SPDY+WiFiRR provides improvement of 2:9�. In real set-
tings, HTTP+WiFiRR provides improvement of 2:4�, SPDY
+WiFiRR provides improvement of 2:7�.

We examine scalability of WiFiRR by evaluating it for dif-
ferent number of clients. We vary the total number of clients
from 10 to 50. WiFiRR provides maximum improvement of
3:5� when the network size is 40. The improvement of
WiFiRR does not degradewith increasing number of clients.

We also compare our solution to another solution
WiFox [5] that seeks to improve TCP download performance
in dense scenarios by prioritizing AP. WiFiRR improves
download time by 2:25� over WiFox. To reduce contention,
WiFox merely prioritizes the AP over clients while we
address contention more directly by maintaining only a few
‘active’ clientswhile throttling all others.We have also evalu-
atedWiFiRR for different interactive applications like skype,
ssh etc. We realize that WiFiRR does not give significant per-
formance improvement for these traffic types but nor does it
degrade performance for these traffic types.

Our contributions can be summarized as follows: (a) a
real-life measurement study of TCP download performance
and its careful analysis, which identifies the factors that con-
tribute (and eliminates the factors that do not) to poor per-
formance in dense scenarios, and (b) a solution approach
WiFiRR that improves the download time of large TCP
flows by reducing channel contention, and (c) extensive
evaluation of WiFiRR in simulations and in real settings.

The rest of the paper is organized as follows. Section 2 dis-
cusses related work. Section 3 describes our measurement
study in real classrooms, and Section 4 describes some con-
trolled experiments and simulations we conducted to under-
stand the measurement results in the classrooms. Section 5
describes the design of our solution WiFiRR that improves
performance by addressing the problemswe found. Section 6
presents evaluation of the solution in simulation and in real
settings. Finally, Section 7 concludes the paper.

2 RELATED WORK

Starting with Bianchi’s seminal work [13], several research-
ers have analytically shown that the performance of 802.11
CSMA/CA degrades with increase in offered load, due to
increased contention on the wireless channel. This analysis
assumes saturated traffic, i.e., all stations are always back-
logged and contend for the channel. [14] further generalizes
the result, and shows that collision probability increases
with increasing number of stations. However, subsequent
research [1], [2] has considered a more specific problem of
TCP downloads over 802.11. In this case, the analysis shows
that the number of contending stations is much lower than
the total number of stations due to the TCP data/ack clock-
ing mechanism. When several downlink flows go through
an AP, and the AP sends a data packet to a client at a certain
instant, the client that received this data packet alone will
generate a TCP ACK, and contend with the AP for the chan-
nel. All the other clients will not actively contend for the
channel at this instant, until data packets arrive for them
from the AP. This data/ack clocking mechanism of TCP

214 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 1, JANUARY 2017

flows ensures that the contention on the channel and colli-
sion probability stay low, with the result that the system
throughput does not degrade much with increasing number
of clients.

The analysis results of the scaling of TCP downloads have
also been backed up by experimental studies [3], [4]. These
papers show that the TCP’s data/ack clocking mechanism
allows TCP downloads to scale to over hundred clients with-
out any significant degradation of aggregate system
throughput. However, the experiments in these papers con-
sider only long running TCP flows and emulated user traffic
on testbeds of homogeneous nodes. In contrast, ourmeasure-
ment study conducted with several tens of users trying to
download files using TCP shows that TCP download does
not scale as well in the context of real user traffic.

Several researchers have reported some subset of the
problems we have encountered in our measurement study,
and suggested several techniques to address these prob-
lems. Prior work [5], [6], [7] has considered the problem of
asymmetry between uplink and downlink traffic in
WLANs. When a large number of users are downloading
traffic over the WLAN, most traffic is downlink. However,
the AP that delivers all the downlink traffic has to contend
for the channel with the other clients, resulting in an unfair
allocation to the downlink traffic. To solve this problem of
asymmetry, these papers propose several MAC-layer
enhancements to prioritize the AP’s channel access. For
example, WiFox [5] prioritizes AP’s channel access over the
clients dynamically depending on the load in the network.
The AP accesses medium with high priority when AP’s
transmission queue size is high and accesses with default
priority otherwise. As a result, WiFox claims to give 400-
700 percent increase in throughput and 30-40 percent
improvement in average response time. Our work differs
from WiFox and other related work in that we identify and
address several factors (besides asymmetry between uplink
and downlink) that contribute to poor TCP download per-
formance in dense scenarios. Specifically compared to
WiFox, our work differs in that while WiFox merely priori-
tizes the AP over clients, we address contention more
directly by throttling all except a few ‘active’ clients.

Other research [8] has observed the effect of channel con-
tention on the RTT of TCP flows through a WLAN. The
authors show that highly variable RTTs due to contention
lead to incorrect estimation of TCP retransmission timeout,
and hence lead to spurious retransmissions. The authors
propose prioritization of TCP ACKs as a solution. Research-
ers have also observed the impact of channel contention on
bit rate adaptation [9], [10] in dense deployments, and pro-
posed solutions to prevent lowering of bit rate unnecessar-
ily in response to collisions. While each of the above papers
measure and analyze a subset of problems that arise in a
dense WiFi network, none of them have reported all of the
problems or their complex interplay we find in our
measurements.

SPDY [12] is an enhancement to HTTP=1:1 protocol.
SPDY pronounced as “SPeeDY” is an application layer pro-
tocol developed primarily at Google to speed up the web.
The basic features of SPDY are: 1) TCP stream multiplexing,
2) HTTP header compression, 3) Request prioritization and,
4) Server push. 1) TCP stream multiplexing: SPDY opens a

single TCP connection for multiple web objects. It multi-
plexes requests for multiple web objects on a single connec-
tion. This increases the efficiency of TCP as fewer network
connections are made. 2) HTTP header compression:
SPDY compresses request and response headers. So, the
total number of transmitted packets and bytes reduces.
3) Request prioritization: SPDY assigns a priority to each
request thus higher priority requests are served before the
non-critical requests. 4) Server push: SPDY allows the server
to push the content to the client even before it requests
them. This enables effective usage of the bandwidth. SPDY
is complementary to our work. Any application layer proto-
col modifications or client side solutions are complementary
to our work. In our evaluation, we show that the use of
SPDY in fact magnifies WiFiRR’s gain further.

A new IEEE standard IEEE 802.11ah [15] is coming up
which utilizes 1 GHz license-exempt bands. It basically sup-
ports the concept of the Internet of Things (IoT). Here large
number of stations/sensors will co-operate to share the net-
work channel, thus the contention on the network will be
high. To reduce the contention/collision, the stations are
divided into several groups. The network channel access is
divided into two tiers: inter-group and intra-group. Two such
grouping algorithms exist following traditional IEEE 802.11
standard, they are: Token-coordinated random access MAC
(TMAC) [16] and Group-basedMAC (GMAC) [17]. In TMAC
protocol, the coordinating AP assigns a non-overlapping
interval (slot) to each group. Contention happens only within
the group. In case of GMAC, leaders from each group are
selected. Contention happens only within the leaders. Then
the winning leader specifies the schedule of the transmissions
from the group and stations transmit accordingly. [18]
improves the above TMAC and GMAC protocols in the con-
text of Smart Metering Network (SMN) for the new IEEE
802.11ah standard and proposes enhanced version of TMAC
and GMAC protocols. They are: TDMA-DCF and DCF-
TDMA respectively. These two protocols take care of hidden
terminal problem, static nodes etc. The authors have done
numerical analysis and have proposed optimal group size for
the above two protocols.

In case of IEEE 802.11ah, the scale is really high. For e.g.,
IEEE 802.11ah TG needs to support 6,000 smart meters in
smart grid use case [19]. However, we face performance
issues even with 20-30 devices per AP. Our idea is also simi-
lar to these protocols, as we too maintain only a subset of cli-
ents to be active in channel contention. But for our case,
group division is done implicitly. We do not require client-
side support or MAC protocol modification. WiFiRR works
for traditional IEEE 802.11 standard.

To summarize, our work improves over prior work on
improving TCP performance in real-life dense scenarios by
analyzing the problem more thoroughly, and identifying
interplay of almost all the factors that contribute to poor
performance.

3 MEASUREMENTS IN LIVE CLASSROOMS

As discussed in the previous section, prior work has shown
analytically and experimentally that TCP download perfor-
mance scales well. So, will the good performance observed
in these analysis and lab experiments carry over to real life?

MAITY ET AL.: TCP DOWNLOAD PERFORMANCE IN DENSE WIFI SCENARIOS: ANALYSIS AND SOLUTION 215

To understand this, we collected wireless and TCP meas-
urements for several courses running at our Institute in live
classrooms. WiFi was used in the classrooms for various
classroom activities i.e., online quiz, download of instruc-
tional materials etc.

Here we present three such sample scenarios in three dif-
ferent physical classrooms, and name them as classroom-1,
classroom-2 and classroom-3. Table 1 summarizes our mea-
surement data set showing the number of WiFi clients,
number of access points, classroom activities and type of cli-
ents for the three classrooms.

3.1 Classroom-1

We first describe our classroom-1 measurements.

3.1.1 Measurement Setup

We describe our data collection method for measurements
in a real classroom. In a course with 124 registered students,
taught by one of the authors, a subset of lectures involved
downloads of supplementary instruction material by stu-
dents, and some involved graded quizzes. The students
used individual laptops and tablets, and some desktops as
well, for these activities. Our setup consisted of students
connecting to a web server that hosts instruction or quiz
content. A small fraction of students used wired access. We
had three enterprise-grade WiFi APs, setup in the three
non-overlapping 802.11g channels 1, 6, and 11. All the rele-
vant entities were on the same extended LAN.

The activity was as follows. The students browsed to the
content server, authenticated themselves, and downloaded
a variety of content (video lectures, references, quizzes)
over the wireless channel as instructed. We instrumented
the web server to log the per-request service time. In addi-
tion, we also collected network traces from two vantage
points: (i) The WiFi AP was instrumented to collect per-

frame MAC layer statistics. Our code had access to hard-
ware registers in the WiFi NIC, that let us determine the
fraction of airtime that was spent in transmissions, recep-
tions, and in idle listening at a very fine granularity of
250ns. (ii) A sniffer running tcpdump was connected via an
Ethernet hub to the content server to collect TCP and HTTP
logs.

Prior to our measurements, we ensured that the WiFi AP,
the web server, and the wired backhaul from the AP to the
web server were not loaded. That is, the performance seen
by the clients was constrained by the wireless network bot-
tleneck. External WiFi interference was minimal.

From all our measurements, we choose one representa-
tive dataset to present results from: a quiz conducted in
class. In the quiz, 94 students, spread roughly equally over
3 APs, downloaded a quiz question paper of size ’200 KB.
A subset of 24 students also downloaded the optional refer-
ence material file of size ’4 MB. We pick one of the three
APs to present results from; the results at the others were
similar. This AP in question served 32 students: all 32 stu-
dents downloaded the quiz file, and 17 students down-
loaded the reference material.

3.1.2 Results

First, we present the most important performance metric—
the completion time, since this delay determines how users
perceive the quality of the network. The completion time is
measured as the time from the issue of HTTP GET request
for the particular file to the last packet of the download
received by the user. Fig. 1 shows the CDF of the completion
times for all the clients, for both the quiz and reference files.
To put these numbers in perspective, let us calculate the
expected download time. First, note that our classroom was
such that even the farthest client could comfortably operate
at the highest 54 Mbps bit rate of 802.11g, when operating in
isolation (we verified this during AP placement). This phys-
ical layer bit rate translates to about 24 Mbps of TCP-layer
throughput, after accounting for link-layer overheads and
the overheads of TCP ACKs. If we go by prior work that
claims that TCP download throughput scales perfectly with
the number of clients, each client should have gotten a TCP
throughput of 24 Mbps/32=0.75 Mbps. Assuming all clients
downloaded both the quiz and reference file, which we
overestimate as 5 MB worth of content per client, the
expected download time still works out to only about
5 MB/0.75 Mbps=54 s. In contrast, the worst case comple-
tion times in Fig. 1 was 229 s for the quiz file, and 478 s for
the reference file!1

TABLE 1
Measurement Dataset

Parameter Classroom-1 Classroom-2 Classroom-3

Number of WiFi clients 94 200 43
Number of Access Points 3 3 1
Activity Online quiz Online quiz Instructional material (video) download
Clients Mostly laptops and few phones/tablets Mobile phones/tablets Mostly laptops and few phones/tablets

Fig. 1. CDF of the time taken to download the quiz and references files.

1. This of course created logistical problems; the instructor had to
give time extensions to those students who experienced delay in
downloading!

216 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 1, JANUARY 2017

Next, we investigate why the completion time was so
bad. Upon looking at the TCP time-sequence graphs, we
found that some clients suffered severe TCP segment losses,
and often timed out several times during the course of the
measurement. Fig. 2 shows the average TCP retransmission
rate (averaged across all clients every 2 s) as a function of
time; most of these retransmissions were due to a TCP time-
out. Fig. 3 shows the TCP time sequence graph of a client
that experienced multiple TCP timeouts.

To understand why the application-layer performance
was so bad, we analyze the logs collected at the AP to
understand the MAC-layer performance in the network.
Using our custom instrumentation of the AP driver, we
determined what fraction of the airtime was reported as
“busy” at the AP. This air occupancy percentage is shown
in Fig. 4 for the duration of the quiz download. Also shown
is the aggregate download throughput of the AP during
this time. Both measures are shown as two-second averages.
We see from the figure that there are periods where the
channel is busy, and there are also periods where the chan-
nel is idle for large fractions of time. This behavior fits well
with our earlier observation of TCP timeouts. We also note
that, irrespective of the channel busy percentage, the aggre-
gate throughput is poor most of the time.

We further analyze the AP’s logs to determine what
caused the AP to deliver such low throughput, even when
the channel was busy. We verified that the signal strength at
all clients was good enough to support high bit rates. The
other possibility is that of collisions, due to multiple clients
picking the same backoff counter and transmitting in the
same slot during CSMA MAC’s channel arbitration mecha-
nism. Collisions are notoriously hard to detect using packet

logs, because collisions often result in a synchronization
error at the physical layer, thereby leaving no trace in any
kind of packet tracing mechanism. So, we use hardware
registers exported to the device driver to determine the
amount of “wasted” airtime at the AP, defined as the amount
of time spent in one of the following activities: (i) transmit-
ting packets that failed to elicit a link-layer ACK, (ii) receiv-
ing packets which could not be successfully decoded (either
due to synchronization error at the physical layer, or a CRC
error after synchronizing with the transmission). Fig. 4 also
shows this wasted airtime percentage at the AP as a function
of time. This figure shows that around 10-20 percent of the
AP’s airtime is oftenwasted, possibly due to collisions on the
channel.

We next investigate why the contention and collision rate
on the channel was so high. Prior work, as discussed in Sec-
tion 2, shows that if the only traffic on the channel is TCP
data and ACKs, the contention on the channel should be
very low. However, in our measurement, we found that
there was a small amount of extra upload traffic besides the
TCP ACKs. Figs 5a and 5b show the rate of upload traffic in
packets/sec and in kbps respectively. These metrics are
shown as averages over 100 ms intervals; this indicates the
burstiness of the upload traffic. This traffic consists of GET
requests for various embedded objects on the course web-
page, traffic generated in navigating the authentication
page, TCP handshake packets for the multiple connections
the browser opens, and some small amount of extra back-
ground traffic likely generated by email clients, Dropbox,
and other such applications. Note that the amount of upload
traffic is very low, averaging at about 8kbps in aggregate
across all clients at the AP. However, it appears that this
traffic was enough to increase the contention on the channel,
and cause collision losses.

To investigate whether the upload traffic is the major rea-
son for such poor performance we set up an controlled
experiment. We connected 30 clients to an access point. The
clients downloaded a 5 MB file through command line
using WGET command as opposed to using a browser to
open the classroom webpage, authenticating and then
download. We shut down all the background traffic like
Dropbox, email clients etc. The completion times were
matching with the theoretical expectation. Given that

Fig. 2. The average TCP retransmission rate across all clients versus
time.

Fig. 3. TCP time sequence diagram of a client that experienced multiple
timeouts.

Fig. 4. Aggregate throughput, air occupancy, and wasted airtime at the
AP.

MAITY ET AL.: TCP DOWNLOAD PERFORMANCE IN DENSE WIFI SCENARIOS: ANALYSIS AND SOLUTION 217

WGET completion times are way lesser than the classroom
scenario this points to the fact that upload traffic is one of
major factors for poor performance.

The contention on the channel due to a large number of
active clients is further exacerbated by the interaction with
the bit rate adaptation. It is well known in prior work that
most rate adaptation algorithms mistake collision losses for
poor signal on the channel, and lower the bit rate in the
hope of increasing the probability of packet delivery. How-
ever, transmissions at lower bit rate take up more airtime,
further increasing the contention on the channel. Fig. 6
shows a CDF of the time-averaged bit rates of the clients
during the quiz. We see that most clients were operating at
a very low average rate, suggesting that the rate adaptation
algorithms were using lower rates upon observing losses.

In addition to the metrics reported above, the overall
experience of the students in using the WiFi network was
very bad. When the students were simultaneously down-
loading large files and stressing the wireless networks, stu-
dents often complained that their WiFi was not responding.
We found many instances where a driver reset was needed
to get the WiFi interface to work, even after the contention
had subsided. We conjecture these to be possible device
driver bugs that were triggered under the high loss rate sit-
uations we encountered in class. It is likely that such situa-
tions are not well tested in client driver code.

Below we present the measurements from two such sce-
narios. Since the performance in these cases were similar to
that in classroom-1, we present only the MAC layer perfor-
mance in each case.

3.2 Classroom-2

Next, we describe our classroom-2 measurements.

3.2.1 Measurement Setup

In this classroom almost 200 students were present. We
installed three access points in three non overlapping

channels of 2.4 Ghz ISM band. The WiFi network was used
in classroom for online quiz activity using an Android quiz
application on students’ tablets. The activity is as follows:
the students authenticated themselves to a server via the
app. When the quiz is published by the teacher, the app
downloaded the quiz file and enabled students to answer the
questions. After that, responses are submitted to the server.

3.2.2 Results

The students’ experience of using WiFi network was really
bad. The download time of quiz file was high. For some stu-
dents, the download was stuck, they had to restart the app,
to download afresh. They faced the same scenario during
submitting answers as well. Out of 200 students, only about
120 students could actually submit their responses. This
resulted in the instructor fall back on paper-printed quiz
forms.

Out of the three access points we present result from one
access point (the others were similar) which served 80 cli-
ents. Given that quiz file itself was small, we did not expect
such poor performance. Fig. 7a shows MAC layer perfor-
mance over a sample duration of 300 sec (similar graph as
of Fig. 4 for classroom-1). Here we see although air is always
busy, the aggregate throughput of the network is very low
(less than 1 Mbps). To get an idea of the contention/colli-
sion on the channel, we determine the amount of wasted
airtime. The wasted airtime is about 20-40 percent, which is
even higher than in the case of classroom-1.

3.3 Classroom-3

Finally, we describe our classroom-3 measurements.

3.3.1 Measurement Setup

In this classroom setting, 43 students were associated to one
AP. The WiFi network was used in classroom for download-
ing online video instructional material. The students used
WiFi-enabled individual laptops and tablets for download-
ing video content from web server. The classroom activity is
as follows: the students browsed to the content server,
authenticated themselves and viewed embedded video con-
tent (with javascript controlled video markers) over the
network.

3.3.2 Results

The empirical observation was that the network was notice-
ably slow when all the students were using the network.
Fig. 7b shows MAC layer performance over a sample

Fig. 5. Upload traffic pkts/s & kbps generated by clients during the quiz.

Fig. 6. CDF of the time-averaged bit rates of clients in the uplink and
downlink directions.

218 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 1, JANUARY 2017

duration of 300 sec for this classroom. Here we see an inter-
esting pattern, when the wasted airtime is low (10 percent)
then the aggregate throughput is high (12-14 Mbps) as soon
as the wasted airtime increases (20-30 percent), the aggre-
gate throughput reduces (4-5 Mbps). This might be pointing
to the fact that as the collision on the channel (thus the
wasted airtime) increases the aggregate throughput
reduces. Are collisions due to the CSMA MAC protocol
mechanisms alone enough to explain the high losses we
saw in our measurements? Or were there any other factors
at work? The limited control to vary parameters and moni-
tor performance in a live measurement makes it difficult to
answer some questions, which we seek to address with a
combination of simulations and controlled experiments in
the next section.

4 SIMULATIONS AND CONTROLLED EXPERIMENTS

In this section, we describe several results from simulations
and controlled experiments conducted to better understand
the classroomWiFi measurements.

4.1 Simulations

As described earlier, accurately measuring collision losses
in an experiment is a hard problem. Even using multiple
wireless sniffers on the air cannot guarantee that we can
identify the error rate due to collisions, because the sniffers
themselves may fail to decode most collisions. Therefore,
we resort to simulations, where we can instrument the sim-
ulator to identify collisions.

We use the ns-3 network simulator to perform simula-
tions. Our simulation model consists of 30 802.11g WiFi

clients connected to an AP. To simulate the traffic seen in
the classroom, each client emulates the browsing behaviour
observed in classroom-1 and simultaneously downloads a
5 MB file from a server. We use BulkSendApplication module
(predefined in ns-3) for downloading 5 MB file. ns-3 does
not support any type of browsing module. So, we created
two application modules in ns-3 for client and server. We
have named them as ChattyClient for client module and
WebServer for server module. In the ChattyClient module,
one can specify number of parallel connections to be
opened, number of web objects and their sizes. In the Web-
Server module one can specify response sizes. To emulate
the browsing behaviour observed in classroom, each client
opens two TCP connections and sends request for 20 objects.
The request sizes are within 300-700 Bytes and response
sizes are within 500-900 Bytes. The average upload rate is
10 kbps: close to what we observed in our classroom meas-
urements. The clients are placed close enough to the AP to
eliminate the possibility of any channel losses, so that a
packet loss occurs only if two clients pick the same backoff
value and collide during the CSMA MAC operation. We
have used the Minstrel rate adaptation algorithm, and an
AP queue size of 512 packets, as used in the real AP. Table 2
summarizes the parameters in our simulations.

Our simulation resulted in a download time between 297
and 443 seconds for the clients, which roughly matches the
download performance seen during the classroom quiz.
During the download, the collision rate on the channel
(defined as the fraction of airtime on the channel that was
wasted in collision) shown in Fig. 122 was between 15 and
20 percent, proving that the poor TCP performance was pri-
marily due to collision losses on the channel.

4.2 Controlled Experiments

Next, we perform several small-scale controlled experi-
ments in the lab to better understand the impact of colli-
sions and contention on the channel. We first seek to
understand the impact of collision losses on the rate adapta-
tion algorithm. We set up an experiment where a WiFi client

Fig. 7. Aggregate throughput, air occupancy, and wasted airtime at the AP for Classroom-2 and Classroom-3.

TABLE 2
Simulation Setup

Parameter Value

WiFi Protocol 802.11 g
Rate adaptation algorithm Minstrel
AP queue size 512 packets
Number of clients 30
Download size 5 MB
Upload traffic Browser behaviour 2. Fig. 12 is part of WiFiRR’s evaluation and appears in sequence

later.

MAITY ET AL.: TCP DOWNLOAD PERFORMANCE IN DENSE WIFI SCENARIOS: ANALYSIS AND SOLUTION 219

(a Linux laptop with a “Qualcomm Atheros QCA9565 /
AR9565 Wireless Network Adapter (rev 01)”) is download-
ing a large file via the AP. After 2 minutes, we introduce
14 other WiFi clients on to the channel. These clients are
Microtik single-board computers, that generate TCP upload
traffic at the rate of 100 kbps. After a further 2-minute dura-
tion of high channel contention between the 15 WiFi clients,
we turn off the Microtik boards, and let the laptop traffic
run for some more time. Fig. 8 shows the time-averaged bit
rate (averaged over 2 sec) of the laptop in the upload direc-
tion for the duration of this experiment. We observe from
the figure that the rate adaptation algorithm lowers its bit
rate due to collision losses, as expected. Further, we note
that the rate adaptation algorithm takes around 12 seconds
(after the Microtik boards are turned off) to recover from
the effects of channel contention, which is approximately
the timescale at which popular bit rate adaptation algo-
rithms adapt rates. Similar results were observed with
three other laptops running three different device drivers
as well. This recovery time of the bit rate adaptation algo-
rithm has a significance in explaining our measurement
data of the previous section. The bursty upload traffic seen
in our experiment has several periods of quiet between
bursts of high upload activity. However, due to the rela-
tively long recovery time of the rate adaptation algorithm,
the effects of contention (i.e., the lowering of bit rates) per-
sist even in the periods between upload bursts, magnifying
the effect of the small amount of upload traffic.

Next, we identify the impact of collision losses on TCP
performance. We setup an experiment with 21 WiFi clients
(seven laptops and 14Microtik single-board computers) con-
nected to an AP. The clients download a 9 MB file from a
server connected to the AP. The clients run a browser emula-
tion script that generates around 50 GET requests to down-
load several embedded objects in a sample webpage. In
addition, the clients also generate a bursty upload TCP traffic
at an average rate of 200 kbps, to simulate other background
application traffic. This mix of upload and download traffic
created enough contention on the channel to slow down the
TCP downloads, and we observed several of the effects
noticed in the classroom measurements. A wireless sniffer
over the channel reported that 22 percent of frames decoded
were marked as link-layer retries. While this is not a true
indication of the collision rate on the channel (as the sniffer
may havemissed capturing several frames due to synchroni-
zation errors caused by collisions etc.), it gives us enough
indication that the loss rate due to collisions is substantial.

High channel contention also leads to variable delays in
transmitting a packet (a transmission may succeed without

collisions sometimes, but may require several unsuccessful
attempts and multiple backoffs some other time). For exam-
ple, Fig. 9 shows the highly variable TCP RTT of a single cli-
ent in the controlled experiment with 21 clients described
above. Sudden RTT variations confuse the TCP’s RTO esti-
mation algorithm, and may lead to TCP timing out unneces-
sarily, while the data packet is still in transit. In fact, we
collected client-side logs in the experiment above and
noticed 61 instances of spurious TCP timeouts and retrans-
missions (summed across all the clients), where the original
transmission and the subsequent retransmission were both
received by the client after a long delay. While we could not
collect client-side logs in the classroom, we did notice
highly variable RTTs and expect several of the TCP retrans-
missions seen were in fact unnecessary.

Finally, we could reproduce the phenomenon of client
device drivers becoming non-responsive under high conten-
tion with several different laptops and device drivers in our
controlled experiments as well.

Note that we have used our controlled experiments to
verify that there were no other causes of packet loss intro-
duced by the wired channel or the AP in our measurements.
We repeated our experiments with APs from two popular
vendors, and obtained similar results. We also verified that
there was no buffer mismanagement at the AP. For exam-
ple, with vendor supported AP logs we verified that the AP
buffer always had enough packets to transmit over the wire-
less link, and that buffer underflow was not the reason for
poor throughput.

5 DESIGN OF WIFIRR

We now describe our solution WiFiRR, that seeks to
improve the performance of large TCP downloads in a
dense WiFi setting like classrooms.

The measurements and analyses of the previous sections
lead us to conclude that high channel contention is root
cause for poor TCP download performance. To address this
problem, we seek to limit the number of clients contending
for the wireless channel at any instant by modifying the
AP’s MAC-layer scheduling policy. Our solution, WiFiRR,
is designed as a modification to the AP. Normally, APs
transmit packets belonging to all clients from its buffer in a
FIFO manner. With WiFiRR, an AP designates a subset of K
out of the total N clients as “active” during a given time slot
T . Whenever the AP gets a chance to transmit, the AP looks
through its queue and preferentially picks packets to these
K active clients, skipping over packets from non-active cli-
ents in the queue. The AP varies the set of K active clients

Fig. 8. The bit rates chosen by a WiFi client in the presence of
contention.

Fig. 9. Highly variable RTTs of a TCP flow caused by high channel
contention.

220 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 1, JANUARY 2017

in a round-robin fashion in every slot, so that every client
eventually gets a chance to make progress. The AP trans-
mits broadcast and management frames normally, as per
their turn in the queue. Of course, the AP does not keep the
link idle: if there are no broadcast frames or frames to active
clients, it will transmit frames to non-active clients.

Now, in a time slot T, since we suppress downlink TCP
data and ACK packets for the marked inactive clients, their
TCP flows will go quiet for the duration of the slot, and the
uplink traffic from the clients is greatly suppressed as well.
This leads to a lower number of contending nodes, fewer
collision losses, and eventually, better TCP performance for
the active clients. Our solution does not require any change
at the clients. While our solution leads to a temporary stall-
ing of the non-active clients, the overall performance
improves over large TCP downloads, because the clients
will experience much better network conditions once they
become active.

Intuitively, number of active clients K should be a rea-
sonable value such that the collision on the channel is less.
Also, slot-time T should be large enough so that few frames
of active clients could be exchanged and should be small
enough so that non active clients’ performance does not get
affected. In our evaluation (Section 6), we show that an
empirical value of K ¼ 5 and T ¼ 1:6 sec works best for a
variety of settings.

The principle of WiFiRR is: by suppressing the downlink
data and TCPACKs for uplink data, it expects that the uplink
traffic will be reduced and thus the uplink contention will
reduce too. But if the uplink traffic can continue without TCP
ACKs, then WiFiRR will be less effective. For example, for
opening a webpage typical browsers open 6-8 multiple par-
allel TCP connections for downloading multiple web objects
embedded in the webpage. So, from each of the TCP connec-
tions TCP SYN packet will be sent by the client. Now if we
suppress TCP SYN+ACK packet at the AP, that will result in
reattempt of TCP SYN packet transmission by the client.
SYN max retry limit is six, so if all the TCP SYN+ACK pack-
ets are suppressed, each client will send 6-8 connection
requests and six retry requests per connection. This will
increase contention in the network. While WiFiRR shows
some performance improvement in such scenarios, perfor-
mance will improve more if a client-side solution is used in
conjunction.

As we discussed in Section 2, SPDY [12] is an application
layer protocol as a replacement for HTTP. The goal of SPDY
is to reduce web page load latency and improve security.

Out of different features that SPDY provides, the most
important one in our context is TCP stream multiplexing.
SPDY opens a single TCP connection for downloading mul-
tiple web objects, as opposed to typical HTTP browsers
which open 6-8 multiple parallel connections to download
multiple web objects. SPDY also allows requests for multi-
ple web objects to be interleaved on a single connection.
Thus SPDY reduces the chattiness of the clients. This helps
in reducing the contention/collision on the channel. Note
that while overall performance improves with client-side
support, such support is not necessary for WiFiRR to be
beneficial.

A possible concern with WiFiRR as described above is
the following. If we suppress traffic for non active flows,
this might affect short/interactive flows. Here the negative
effects of stalling may overweigh the benefits. To address
this in WiFiRR, we do not suppress the non active flows
totally, instead we allow a low rate traffic to continue for
the non active flows. We show in our evaluation that this is
effective in practice.

6 EVALUATION

We have done extensive evaluation of WiFiRR in simulation
and in real settings. In Section 6.1 we discuss simulation
results and in Section 6.2 we discuss experimental results.

6.1 Simulations

We have implemented WiFiRR in ns-3 by modifying AP’s
MAC layer scheduling policy as described before. We use
the same simulation scenario discussed in Sec. 4.1 (Table 2)
to evaluate our scheme: a simulation of 30 clients perform-
ing a large download (of 5 MB each), while simultaneously
generating a low rate upload traffic emulating browser
behaviour. Each client opens two connections and sends
request for 20 objects with average upload rate at 10 kbps.

We experimented with different values of slot duration T
and number of active clients K. Fig. 10a shows the mini-
mum, median, and maximum download completion times
over 30 clients with WiFiRR. The slot duration is varied
from 500 millisec to 7 sec, and the number of active clients
K is fixed at 5. The horizontal lines also show the minimum
and maximum completion times without WiFiRR. We find
that the worst case completion time reduces to 284 sec from
443 sec (1:6� reduction) when the slot duration is 1:6 sec.
Note that the worst case completion time is an important
metric in settings like classrooms: the instructor can move

Fig. 10. Min, median, and max download completion times varying T and K.

MAITY ET AL.: TCP DOWNLOAD PERFORMANCE IN DENSE WIFI SCENARIOS: ANALYSIS AND SOLUTION 221

on to the next activity only after the last student is done. The
average RTT of the TCP flows in our simulation was around
400millisec due to contention, resulting in a slot duration of
1:6 sec working best.

Fig. 10b shows a similar comparison of completion times,
where we set the slot size T to 1.6 s, but vary the number of
active clients K. Here, K ¼ 5 leads to maximum reduction
(1:6�) of worst case completion time.

In the above browsing upload model, we vary the num-
ber of parallel connections, number of web objects keeping
the request and response size and upload rate same i.e.,
10 Kbps, and evaluate with WiFiRR. Table 3 shows
improvement for different combinations. With more paral-
lel connections, WiFiRR’s mechanism of suppressing the
downlink ACK is less effective in reducing uplink data
traffic.

Next, we discuss results of browsing upload case using
SPDY as application layer protocol instead of HTTP. We
implemented SPDY in ns-3. We created two application
modules and name them as SPDYClient and SPDYServer.
Out of all the features SPDY provides: multiplexing, com-
pression, prioritization and server push; we implemented
only the multiplexing i.e., single TCP connection feature as
this is the most useful feature for our context. SPDYClient
opens a single TCP connection and sends requests for
40 objects to the SPDYServer. The size of the request and
responses are same as of our ChattyClient and WebServer
module (see Section 4.1).

We evaluate SPDY in the same simulation scenario of
30 clients doing a 5 MB download, described before in
Table 2. In Fig. 11, we show a comparison of minimum,
median and maximum download completion time for the
clients for HTTP (base case) and SPDY with and without
WiFiRR. SPDY alone improves worst case completion time
by a factor of 1:8�. Then we evaluate the same scenario after
enabling WiFiRR at the AP. SPDY+WiFiRR provides the
maximum improvement of worst case completion time by a
factor of 2:9�.

WiFiRR benefits most from SPDY over HTTP because
single TCP connection not only reduces the total uplink traf-
fic but also the contention. When at the AP, WiFiRR marks a
client as inactive, packets for that client are queued up till
its turn comes. For SPDY all these packets belong to the sin-
gle connection and TCP adapts to this stalling, suppresses
uplink traffic correctly. Now for HTTP as there are multiple
TCP connections, each of those connections will adapt to
this stalling differently and thus the uplink traffic may not
be suppressed adequately.

Now, we inspect whether WiFiRR has indeed reduced
the collision percentage. Fig. 12 shows the collision percent-
age for the base case and with SPDY+WiFiRR. WiFiRR leads
to a lower rate of collisions. While the average rate of colli-
sions on the channel was 15-20 percent without WiFiRR,
with WiFiRR (1:6 sec slot and 5 active clients) it reduces to
2-3percent.

Next, we examine the scalability of WiFiRR by evaluating
it under different test settings. In the above simulation sce-
nario in Table 2, we vary the total number of clients from 10
to 50 and evaluate with WiFiRR. Fig. 13 shows min, median
and max download completion time for HTTP and SPDY
with and without WiFiRR as the network size grows.
WiFiRR provides an improvement of 2:7� for a network
size of 10 and 3:4� for a network size of 50. The improve-
ment of WiFiRR does not degrade with increasing number
of clients. Thus, WiFiRR scales well with number of clients.
WiFiRR provides maximum improvement of 3:5� when the
network size is 40.

We also evaluate WiFiRR with another type of upload
traffic i.e., constant upload traffic. We have used the same
simulation scenario of 30 clients performing a large down-
load (of 5 MB each) described in Table 2. Here we have
used the OnOffApplication application module in ns-3. Each
client opens a single TCP connection and uploads con-
stantly at 10 Kbps rate. We have made the OnOffApplication

TABLE 3
WiFiRR Evaluation: Browsing Upload

Number of
connections

Number of
web objects

WiFiRR gain

2 20 1:6�
3 13 1:11�
4 10 1:05�

Fig. 12. Collision percentage during download with and w/o WiFiRR.

Fig. 11. Min, median, and max download completion times for HTTP and
SPDY with & w/o WiFiRR. Fig. 13. Scalability of WiFiRR.

222 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 1, JANUARY 2017

to be always on and uploads at a rate of 10 Kbps. Fig. 14
shows the min, median and max download completion
time for constant upload and browsing upload case with
and without WiFiRR. We denote constant upload as CBR
(constant bit rate) and denote w/o WiFiRR as CBR-BASE
and with WiFiRR as CBR-RR. We denote browsing upload
as BE (browsing emulation) and denote w/o WiFiRR as BE-
BASE and with WiFiRR as BE-RR. For constant upload case,
WiFiRR provides 3:2� reduction in worst case completion
time.

Next, we compare our solution WiFiRR (with 1:6 sec slot
duration, five active clients) to WiFox [5], another solution
that aims to improve the TCP download performance in
dense scenarios. WiFox addresses the asymmetry between
uplink and downlink traffic by prioritizing the AP (see Sec-
tion 2). We implemented WiFox in ns3, as per the specifica-
tion in [5]. We made the AP to use 802.11e, and
implemented the high and default priority channel access
settings as described in [5]. In WiFox, time is divided into
intervals of size T 0, each of which is divided into n slots. In
every time unit T 0, the AP accesses the channel in a priori-
tized fashion for k � n slots. The mapping between the pri-
ority level k and the queue size of the AP can be
logarithmic, exponential, linear and logistic. We use the
logistic mapping as it gave the best results for WiFox. We
also tuned the maximum queue size (from 50 mentioned in
the paper to 512) as it resulted in better completion time for
WiFox in our simulation setting. We set T 0 to 100 millisec, n
to 10 slots, and set the k range to be 0-10. We evaluate WiFox
for both constant upload traffic and browsing upload traffic.
Fig. 15 shows min, median and max download completion
times with WiFox, as compared to the cases with WiFiRR
and without WiFiRR for constant upload traffic. While
WiFox does lead to improved performance over the base
case without WiFiRR, WiFiRR outperforms WiFox by 2:25�

in our scenario of large TCP downloads. For browsing
upload traffic, WiFox does not provide any improvement
over base case while WiFiRR provides 2:9� improvement.

6.2 Experimental Results

Next, we evaluate WiFiRR in real settings. Prior to experi-
mental result, we first discuss our implementation options.

6.2.1 Implementation Options

WiFiRR can be implemented either by modifying AP’s
driver or at a middlebox before the AP. WiFiRR is agnostic to
where it is implemented. Given that every vendor might
not allow modifications to the driver to support WiFiRR,
implementing it at a middlebox before the AP is a more
practical solution. So, instead of modifying AP’s MAC layer
scheduling policy, we implemented WiFiRR as a scheduler
before the AP. The setup is shown in Fig. 16.

The middlebox has two ethernet interfaces connected to
two different subnets. The first one (eth0) is connected to
the AP’s subnet and the other one (eth1) is to the web serv-
er’s subnet. In the middle box, we forward traffic from one
interface to the other. We perform source natting at eth1 so
that all the traffic forwarded by eth0 can reach the
webserver’s subnet. Now all the traffic to and from the
access point will go via the middlebox.

We implemented WiFiRR using Linux tc. We created
classful queuing discipline (qdisc) at eth0 i.e., the ethernet
interface connected to the AP’s subnet. We used HTB i.e.,
hierarchical token bucket queuing discipline.

Fig. 17 shows the schematic diagram of WiFiRR imple-
mentation using HTB. Under root qdisc of the ethernet
interface we created child classes, each of which has a rate
and ceiling parameter. Rate specifies the minimum band-
width a class is assigned, ceiling specifies the maximum

Fig. 14. Min, median, and max download completion times for different
upload traffic types.

Fig. 15. Min, median, and max download completion times for WiFiRR
vs. WiFox.

Fig. 16. Mimicking WiFiRR for experimentation.

Fig. 17. WiFiRR implementation using HTB.

MAITY ET AL.: TCP DOWNLOAD PERFORMANCE IN DENSE WIFI SCENARIOS: ANALYSIS AND SOLUTION 223

bandwidth a class can use. The algorithm is as follows: we
mapped a set of K flows to one class, so for total N flows
there are M ¼ N=K classes. Then in round-robin fashion,
we provided high bandwidth configuration to one class and
low to others. The round-robin frequency is T time. In
implementation, we have usedK ¼ 5 flows and T ¼ 1:6 sec.

6.2.2 Results

Now we discuss experimental results. We emulate the
browsing behaviour as observed in the classroom by using
Epload tool [11]. The Epload tool emulates the page load pro-
cess by segregating network operations from computations.
This is a replacement for browser. In Epload, computations
are performed deterministically, which gives a measure of
repeatability to the experiments. Epload works as follows: it
first records the “dependency graph” of an webpage using
WProf [20]. The dependency graph captures the computa-
tions and network operations to be made, timings of those
and their dependencies. The Epload replays the dependency
graph i.e., the computations and network operations for
the page load process. Epload supports HTTP, HTTPs
(opens 6-8 multiple parallel connections) and SPDY (opens
single connection) as the application layer protocol.

To evaluate WiFiRR, we set up an experiment with
15 laptops connected to one 802.11n access point. Prior to
the experiment, we ensured that the wired backhaul, server
and clients are not the bottleneck. We also switched off
other BSS working on same/neighboring channel of ours
during the experiment. We performed experiment at night
to avoid any interference on 2.4 Ghz band. We collected
traces at our custom instrumented AP collecting per-frame
MAC layer statistics and tcpdump at the server. Along with
the browsing upload, all the clients download a 9 MB file.

Fig. 18 shows min, median and max download comple-
tion time for the clients for HTTP and SPDY with and

without WiFiRR. For base case (i.e., HTTP), the worst case
completion time is 220 sec. Then we enabled WiFiRR at the
middlebox, it reduces the worst case completion time to
91:44 sec, the improvement over base case is 2:4�. After
that, we experimented with SPDY as the application layer
protocol instead of HTTP. We installed SPDY module i.e.,
mod_spdy module for apache at the server, this enables
SPDY at the server. At the client side, we used Epload
module with SPDY as the application layer protocol
instead of HTTP. We configured SPDY by disabling SSL:
that eases debugging. SPDY alone reduces the worst case
completion time to 169 sec, the improvement over HTTP is
1:3�. Finally, we enabled WiFiRR at middlebox and per-
formed the same experiment with SPDY protocol. The
worst case completion time with SPDY+ WiFiRR is 82 sec,
the improvement over base case (HTTP) is 2:7�. SPDY
+WiFiRR combination provides the most improvement, as
expected.

Now we look at different metrics discussed in Section 3
to understand how WiFiRR helps in improving application
layer performance. We first look at the TCP retransmission
percentage. Fig. 19 shows average retransmission rate (aver-
aged across all clients every 2 s) as a function of time. The
average TCP retransmission percentage with WiFiRR is
2-5 percent. This explains better performance of large TCP
downloads with WiFiRR.

Next, we inspect impact of WiFiRR on MAC layer perfor-
mance. We specifically see air occupancy, wasted airtime
and aggregate throughput. The corresponding metrics are
shown in Fig. 20. Here too, air is busy for most of the times
but now aggregate throughput has improved: it is between

Fig. 18. Min, median, and max download completion times for HTTP and
SPDY with & w/o WiFiRR.

Fig. 19. The average TCP retransmission rate across all clients vs. time.
with WiFiRR.

Fig. 20. Aggregate throughput, air occupancy, and wasted airtime at the
AP with WiFiRR.

Fig. 21. RTT with WiFiRR.

224 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 1, JANUARY 2017

20� 40 Mbps. The airtime wasted due to contention is also
small (less than 8 percent).

Now, we look at TCP RTT with WiFiRR. Fig. 21 shows
RTT of a sample client after enabling WiFiRR. There is a
saw-tooth pattern for RTT. This is expected, because
WiFiRR suppresses inactive flows in view of better perfor-
mance for active flows. So during slot time T, inactive flows’
packets will not be sent by the AP. Thus a flow’s packet
might have to sit at the AP’s queue for few times the slot
duration till its turn comes. Eventually when the flow
becomes active RTT reduces. TCP’s RTO estimation algo-
rithm is able to adapt to these changes and does not create
any performance problem.

Next, we look at average bit rate of the clients. Fig. 22
shows CDF of time averaged physical layer bit rate of the
clients in uplink and downlink directions after enabling
WiFiRR. The clients are operating at high bit rate.

To understand the impact of WiFiRR in presence of mul-
tiple APs, we use the same experimental setup described
before. 15 laptops were connected to one 802.11 n access
point. It was set to operate at channel 6 of 2.4 GHz band.
But unlike the previous scenario (i.e., no neighboring APs),
there were two other access points operating on channel 6.
We placed our operating AP close to these access points.
From our custom instrumentation of the AP, we observed
around 30 percent of the airtime was taken up by these
other access points throughout the experiment. Fig. 23
shows min, median and max download completion time of
the clients for HTTP and SPDY with and without WiFiRR.
For base case (i.e., HTTP), the worst case completion time is
481 sec. Note that, here the completion time is higher than
the previous single AP case as the interference from neigh-
boring APs reduces the operating AP’s airtime. WiFiRR pro-
vides an improvement of 1:3� over HTTP. SPDY alone
provides an improvement of 1:1� over HTTP. Finally,
SPDY + WiFiRR provides an improvement of 1:9�. Here

the improvement is lesser than the previous single AP case
(2:7�), because of the interference from neighboring APs.

6.3 Interactive Traffic

To understand the effect of WiFiRR on interactive applica-
tion, we evaluated WiFiRR for different interactive applica-
tions: using simulations as well as real experiments.

6.3.1 Simulations

We used the same simulation scenario of 30 clients con-
nected to one 802.11g access point. To simulate interactive
traffic, 30 clients perform constant download from the
server. Here we have used the existing OnOffApplication
application module in ns-3. We have evaluated WiFiRR for
low (10 Kbps for e.g., Skype audio) and high (1024 Kbps for
e.g., video traffic) download rates.

Here we measure delay and jitter, delay is one way time
and jitter is variation of the delay at client. Figs. 24a and 24b
show the min, median and max of delay and jitter across
the flows for 10 and 1024 Kbps upload rate with and with-
out WiFiRR. For 10 Kbps upload rate, the delay profile with
and without WiFiRR is similar, between 1-9 ms. The jitter
for base case i.e., without WiFiRR is between 1-4:5 ms, and
with WiFiRR it reduces to 0:4 ms-2 ms. One might wonder
how the delay is in order of few ms, where as the slot time
T for WiFiRR is itself few hundreds of ms. This is due to the
fact that we allow a low rate traffic to continue for the non
active flows. For 1024 Kbps upload rate, the delay without
WiFiRR is between 380-430 ms, with WiFiRR it reduces to
200-240 ms. The jitter without WiFiRR is between 7-10 ms,
with WiFiRR it increases to 14-22 ms. Thus, WiFiRR
improves delay, while causing only a minor increase in the
jitter; note that jitter values of up to about 30 ms are consid-
ered acceptable for interactive traffic [21].

Fig. 22. CDF of the time-averaged bit rates of clients in the uplink and
down link directions with WiFiRR.

Fig. 23. Min, median and max download completion times for HTTP and
SPDY with & w/o WiFiRR in presence of neighboring APs.

Fig. 24. Interactive traffic: Min, median, and max delay, jitter with and w/o WiFiRR.

MAITY ET AL.: TCP DOWNLOAD PERFORMANCE IN DENSE WIFI SCENARIOS: ANALYSIS AND SOLUTION 225

6.3.2 Experimental Result

In real settings, we evaluated WiFiRR for SSH (secure shell)
and chat applications. The same experimental set up was
used like in Section 6.2 i.e., 15 clients were connected to one
802.11n AP. WiFiRR was enabled in the middlebox. We put
a lower minimum bandwidth for each classes in the HTB.
The ceiling parameter of the HTB classes was specified as
100 Kbps, so the non active flows can take up to 100 Kbps
bandwidth of the link. We collected traces at our custom
instrumented AP collecting per-frame MAC layer statistics,
and tcpdump at the server and at the clients.

SSH traffic. Here all the clients remotely logged into a
server using ssh, and ran different commands. At the user
side we did not notice any perceptible delay. We measure
RTT at the server. RTT for this traffic is shown in Fig. 25. It
is less than 40ms which is imperceptible to ssh users. As we
allow a low rate traffic to continue, WiFiRR could success-
fully support low bit rate interactive traffic. The minimum
bandwidth to other non active flows did not cause any per-
formance impact on the active flows.

Chat application. We used the same setup for testing a chat
application. All the clients run a chat application, while the
chat server runs on the server. We did not notice any per-
ceptible delay while entering the message. The RTT for the
chat application is shown in Fig. 26. It is less than 45 ms,
which is too small for chat users to notice.

7 CONCLUSION

This paper presented measurements of TCP download per-
formance in a dense WiFi scenario of WiFi-enabled class-
room, where students download quizzes and instruction
material over WiFi. Our results show that TCP download
performance degrades significantly with increased user
density, much more beyond what is to be expected from
prior work. We analyze the reason for this poor perfor-
mance and find that the small amount of background
upload traffic that coexists with the TCP download traffic in
real life causes an increase in contention on the wireless
channel. The subsequent collision losses trigger undesirable
behavior in other protocols: the bit rate adaptation unneces-
sarily lowers its bit rate, TCP gets confused by the highly
variable RTTs and performs spurious retransmits, and
device drivers perform unexpectedly under such losses. We
then propose a solution, WiFiRR, that improves the perfor-
mance of large TCP downloads in a dense scenario. Our
solution operates as a scheduler at the AP, and restricts the
number of active clients contending for the channel at any
instant by selectively transmitting packets to different

subsets of active clients over different slots. To reduce the
client side chattiness even more, we then incorporate SPDY
into our solution. SPDY opens single connection for multi-
ple web objects thus reduces chattiness. We have done
extensive evaluation of WiFiRR in simulation and in real
experiments. WiFiRR provides most improvement when
tried with SPDY compared to HTTP. For a sample scenario
of 30 clients, in simulation, HTTP+WiFiRR reduces worst
case download completion time by 1:6� and SPDY+WiFiRR
by 2:9�. In real settings, HTTP+WiFiRR reduces worst case
download completion time by 2:4� and SPDY+WiFiRR by
2:7�. WiFiRR scales well irrespective of the network size.
The maximum gain with WiFiRR is 3:5�. We have also eval-
uated WiFiRR for interactive traffic. WiFiRR does not harm
interactive traffic’s performance since we allow a low rate
traffic to continue from the non active flows.

This paper thus examines and effectively addresses per-
formance problems in emerging use cases of WiFi: dense
settings with several tens or more clients, such as conferen-
ces, sports stadiums, and WiFi-enabled classrooms. Going
forward, we plan to analyze mathematical foundation of
WiFiRR by following the Bianchi’s model.

REFERENCES

[1] R. Bruno, M. Conti, and E. Gregori, “Modeling TCP throughput
over wireless LANs,” in Proc. 17th IMACS World Congr. Sci. Com-
put., Appl. Math. Simul., 2005, pp. 11–15.

[2] G. Kuriakos, S. Harsha, A. Kumar, and V. Sharma, “Analytical
models for capacity estimation of IEEE 802.11 WLANs using DCF
for internet applications,” Wireless Netw., vol. 15, no. 2, pp. 259–
277, 2009.

[3] M. A. Ergin, K. Ramachandran, and M. Gruteser, “An experimen-
tal study of inter-cell interference effects on system performance
in unplanned wireless LAN deployments,” Comput. Netw., vol. 52.
no. 14, pp. 2728–2744, 2008.

[4] S. Choi, K. Park, and C.-k. Kim, “On the performance characteris-
tics of WLANs: Revisited,” in Proc. SIGMETRICS Int. Conf. Meas.
Model. Comput. Syst., 2005, pp. 97–108.

[5] A. Gupta, J. Min, and I. Rhee, “WiFox: Scaling WiFi performance
for large audience environments,” in Proc. 8th Int. Conf. Emerging
Netw. Experiments Technol., 2012, pp. 217–228.

[6] E. Lopez-Aguiler, J. Casademont, J. Cotrina, and A. Rojas,
“Performance enhancement of WLAN IEEE 802.11 fot asymmetric
traffic,” in Proc. Int. Symp. Pers., Indoor Mobile Radio Commun.,
2005, pp. 1463–1467.

[7] X. Wang and S. A. Mujtaba, “Performance enhancement of 802.11
wireless LAN for asymmetric traffic using an adaptive MAC layer
protocol,” in Proc. IEEE 56th Veh. Technol. Conf., 2002, pp. 753–757.

[8] D. Malone, D. J. Leith, A. Aggarwal, and I. Dangerfield, “Spurious
TCP timeouts in 802.11 networks,” in Proc. 6th Int. Symp.Model. Opti-
mizationMobile, AdHoc,Wireless Netw.Workshops, 2008, pp. 43–49.

[9] P. A. K. Acharya, A. Sharma, E. M. Belding, K. C. Almeroth, and K.
Papagiannaki, “Congestion-aware rate adaptation in wireless net-
works: A measurement-driven approach,” in Proc. 5th Annu. IEEE
Commun. Soc. Conf. Sensor,MeshAdHocCommun.Netw., 2008, pp. 1–9.

Fig. 25. SSH: RTT with WiFiRR. Fig. 26. Chat: RTT with WiFiRR.

226 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 1, JANUARY 2017

[10] K. V. Cardoso and J. F. de Rezende, “Increasing throughput in dense
802.11 networks by automatic rate adaptation improvement,” Wire-
less Netw., vol. 18, no. 1, pp. 95–112, 2012.

[11] (2014). [Online]. Available: http://wprof.cs.washington.edu/
spdy/tool/

[12] (2009). [Online]. Available: https://www.chromium.org/spdy/
spdy-whitepaper

[13] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed
coordination function,” IEEE J. Select. Areas Commun., vol. 18,
no. 3, pp. 535–547, Mar. 2000.

[14] A. Kumar, E. Altman, D. Miorandi, and M. Goyal, “New insights
from a fixed-point analysis of single cell IEEE 802.11 WLANs,”
IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 588–601, Jun. 2007.

[15] (2016). Status of project IEEE 802.11ah [Online]. Available: http://
www.ieee802.org/11/Reports/tgah_update.htm

[16] Y. Yuan, W. A. Arbaugh, and S. Lu, “Towards scalable MAC
design for high-speed wireless LANs,” EURASIP J. Wireless Com-
mun. Netw., vol. 2007, 2007, Art. no. 12597.

[17] Z. Z. Abichar and J. M. Chang, “Group-based medium access con-
trol for IEEE 802.11 n wireless LANs,” IEEE Trans. Mobile Comput.,
vol. 12, no. 2, pp. 304–317, Feb. 2013.

[18] Y. Yang and S. Roy, “Grouping-based MAC protocols for EV
charging data transmission in smart metering network,” IEEE
J. Select. Areas Commun., vol. 32, no. 7, pp. 1328–1343, Jul. 2014.

[19] (2011). Potential compromise for 802.11ah use case document,
IEEE 802.11-11/0457r0, 2011, IEEE 802.11ah TG.

[20] (2014). [Online]. Available: http://wprof.cs.washington.edu/
[21] (2005). Enterprise QoS solution reference network design guide

[Online]. Available: http://www.cisco.com/c/en/us/td/docs/
solutions/Enterprise/WAN_and_MAN/QoS_SRND/QoS-
SRND-Book.pdf

Mukulika Maity received the BE degree in com-
puter science and engineering from Bengal Engi-
neering and Science University, Shibpur, India, in
2010. Then, she joined the Computer Science
and Engineering Department at the Indian Insti-
tute of Technology, Bombay, India, in 2010 to
pursue her MTech degree and in 2012, she con-
verted to the PhD degree. Her PhD topic is health
diagnosis and congestion mitigation of WiFi net-
works. Her research interests are broadly in the
area of wireless networks and mobile computing.

Bhaskaran Raman received the BTech degree
in computer science and engineering from the
Indian Institute of Technology, Madras, in May
1997. He received the MS and PhD degrees in
computer science from the University of Califor-
nia, Berkeley, in 1999 and 2002, respectively. He
was a faculty in the CSE Department at the Indian
Institute of Technology Kanpur, Kanpur, India,
from June 2003. Since July 2007, he has been a
faculty at the CSE Department at the Indian Insti-
tute of Technology, Bombay, India. His research

interests include communication networks, wireless/mobile networks,
large-scale Internet-based systems, and Internet middleware services.

Mythili Vutukuru received the BTech degree in
computer science and engineering from the Indian
Institute of Technology, Madras, in 2004. She
received theMS and PhD degrees in computer sci-
ence from the Massachusetts Institute of Technol-
ogy in 2006 and 2010, respectively. After her PhD,
sheworkedatMovikNetworks, a startup in the tele-
com space, for 3 years. Since July 2013, she has
been a faculty at the CSEDepartment at the Indian
Institute of Technology, Bombay (India). Her
research interests are in networked systems, wire-

less communication, and network security.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MAITY ET AL.: TCP DOWNLOAD PERFORMANCE IN DENSE WIFI SCENARIOS: ANALYSIS AND SOLUTION 227

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

