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Detection and diagnosis of single faults in quantum
circuits
Debajyoti Bera

Abstract—Detection and isolation of faults is a crucial step
in the physical realisation of quantum circuits. Even though
quantum gates and circuits compute reversible functions, the
standard techniques of automatic test pattern generation (ATPG)
for classical reversible circuits are not directly applicable to
quantum circuits. For faulty quantum circuits under the widely
accepted single fault assumption, we show that their behaviour
can be fully characterised by the (single) faulty gate and the
corresponding fault model. This allows us to efficiently determine
test input states as well as measurement strategy for fault
detection and diagnosis. Building on top of these, we design
randomised algorithms which are able to detect every non-
trivial single-gate fault with minimal probability of error. We
also describe similar algorithms for fault diagnosis. We evaluate
our algorithms by the number of output samples that needs
to be collected and the probability of error. Both of these can
be related to the eigenvalues of the operators corresponding to
the circuit gates. We experimentally compare all our strategies
with the state-of-the-art ATPG techniques for quantum circuits
under the “single missing faulty gate” model and demonstrate
that significant improvement is possible if we can exploit the
quantum nature of circuits.

Index Terms—ATPG, fault diagnosis, test generation, testing

I. INTRODUCTION

DETECTION and diagnosis of faults in classical digital
circuits have been part of mainstream circuit manufac-

turing research and industry for several decades. A common
approach for this is to analyse outputs when a circuit is
given a fixed set of carefully chosen input patterns (also
known as test patterns or vectors). ATPG (short for “automatic
test pattern generator”) based techniques essentially try to
efficiently generate a “test set” – an effective set of such inputs.
The intent to is to determine the fault site (or simply establish
existence of a fault) by observing the output of the circuit on
these input. If an input exists for a particular fault, then the
fault is said to be testable, otherwise, undetectable (also called
as redundant) [1], [2]. The goal of ATPG is to generate at
least one input for each testable fault. Apart from the fraction
of total faults that a test set covers (also known as “fault
coverage”), an ATPG technique can be evaluated on other
parameters like, size of its test set, time complexity of test
set generation, and running time of the testing algorithm. The
problem of test set generation is in general computationally
challenging; determining if a fault is testable or redundant
is in fact an NP-complete problem (similar to Boolean for-
mulæ satisfiability) [3]. However, several algorithms have been
proposed over the years, starting from Roth’s D-Algorithm
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in 1966, which are based on satisfiability, back-propagation
techniques, convex optimisation, etc. These have been found
to be practically efficient and are now well-accepted in VLSI.

The two main components of ATPG are fault-activation
and fault-propagation [4]. Fault activation requires choosing
an input pattern to generate suitable logical values carried
by wires at the fault-site and fault-propagation requires that
any difference of value at the fault-site should also lead to a
difference at the output. Even though these steps are compu-
tationally hard for arbitrary classical circuits; however, they
are easy for classical reversible circuits [5]–[8]. A reversible
circuit is a logic circuit which does not allow any fan-out and is
composed of reversible gates. Reversible gates are logic gates
whose output vector is a permutation of the input vector. Two
examples of reversible gates are the NOT gate and the 2-input
CNOT gate that maps logic values (a, b) to (a, b⊕a). As a re-
sult, reversible circuits have two crucial properties that general
(irreversible) circuits do not possess, controllability (any value
at any set of wires can be generated by a suitable input vector)
and observability (any single fault that changes the values
of any set of wires will change the final output) [9]. Both
these properties make fault-activation and fault-propagation
quite straight-forward in classical reversible circuits under the
single-gate fault model. As a result, reversible circuits do not
have any untestable single-gate faults and generating a test-set
is rather simple.

Quantum computing has advanced a lot in the last decade,
both on the algorithmic front as well as physical realisation.
Extremely efficient simulators are now available for common
use [10]. Several groups have reported successful implemen-
tation of important quantum gates in hardware [11], [12].
While the jury is still out on the “right model” of quantum
computing, we believe that one of the successful models
could be that of quantum circuits constructed out of basic
quantum gates. Theoretically a quantum circuit may have
endless faults, but practically, any method of fabricating a
circuit limits the possible set of faults. For this work, we chose
a commonly used fault-model that is based on the “single-fault
assumption”, i.e., the cause of a circuit failure is attributed to
only one faulty gate. ATPG is an obvious avenue to explore
single-fault detection in quantum circuits; however, current
results on ATPG for quantum circuits are few and do not seem
to fully exploit the quantum nature of these circuits [13]–[15].

Quantum circuits are structurally similar to reversible cir-
cuits, with quantum gates in place of reversible gates. The
operators corresponding to the quantum gates are unitary and
hence the gates are reversible. Quantum circuits, therefore,
also have the same controllability and observability properties
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Fig. 1. Quantum teleportation circuit and its faulty version (SMGF model)

of the classical reversible circuits. However, it has been
noted by some researchers that conventional methods used for
classical (reversible) circuits may not be directly applicable to
quantum circuits [4] which is the primary motivation behind
this work. Our goal was to study the primary questions related
to testing of quantum circuits in the realm of single-gate faults.
Can a quantum circuit have untestable faults? How to generate
a test for any particular fault? What should be a testing
method to detect any testable fault? What is the best way to
identify the site of a fault?

A. Background and Related Work

Figure 1a illustrates a simple quantum circuit (for quantum
teleportation) that acts on three qubits and is composed of
first an H (Hadamard) gate on the second qubit, followed by
a CNOT gate on the second and third qubits, followed by
another CNOT gate on the first and second qubits and finally
another H gate on the first qubit. Input to the circuit is fed
at its left end in the form of some “quantum state” over three
qubits and the state of the qubits at the right end is called as
the “output state”. The state of the qubits at any stage (input,
output or intermediate) can be seen as a linear combination
(“superposition”) of “basis states” (equivalent to bit vectors) of
the form α0 |000〉+α1 |001〉+α2 |010〉+α3 |011〉+α4 |100〉+
α5 |101〉+α6 |110〉+α7 |111〉 where αi’s are complex numbers
such that

∑
i |αi|2 = 1. However, a quantum state can never

be “observed” as they are; instead, if measured, a state in
a superposition of basis states like the above will “collapse”
into one of the observable basis states with certain probability.
So, even if the input state to the circuit is fixed, the observed
output may change every-time its output state is measured.
The probability distribution of the different output states will
be referred to as the “output distribution”.

Fault detection in quantum circuits requires different tech-
niques because unlike classical circuits which acts on bit
vectors, quantum gates and circuits act on quantum states
which are, mathematically, complex vectors of unit length.
Therefore existing techniques used to select a suitable bit
vector as a test pattern, like Boolean satisfiability [7] or integer
programming [9], become inapplicable.

Even more difficulty arises since an observation of the
output of a quantum circuit is merely a state from its output
distribution. For example, suppose we run the teleportation
circuit on the input state |100〉. It can be calculated that the
output state, when measured “in the standard basis”, would
yield any of these four states |010〉, |110〉, |001〉, |101〉 with
equal probability. However, if the H gate on the first qubit

is missing (as in the circuit illustrated in Figure 1b), then
standard measurement of the output state on the same input
state |100〉 would yield any one of |110〉, |101〉 with equal
probability. Therefore, we cannot be sure which circuit it is in
case we observe |110〉 or |101〉 as the output. To resolve this
kind of problem we measure the output states in non-standard
basis, something that is quite unique to quantum circuits, such
that the output distributions of the two situations have little
in common. In any case, measurement outcomes of quan-
tum circuits are probabilistic and so, appropriate randomised
analysis of the outcomes is necessary. In fact, Perkowski et
al. first highlighted the necessity of probabilistic testing for
quantum circuits and suggested the use of measurement in
a non-standard basis [13], [16]. However, they used a greedy
heuristic and furthermore, used standard basis vectors as input;
we show later that these are not very effective in fault testing.

Biamonte et al. [17] studied many fault models for a
subclass of quantum circuits (built only using CNOT gates).
In a later work, Hayes et al. [5] suggested that the “missing
gate fault” (MGF) model is more suitable for quantum circuits;
however they also considered circuits built using CNOT gates.
In the MGF model one or more quantum gates are missing;
such missing gates can also be modelled by replacing them
by an “identity gate” that keeps its input state unchanged. The
work that is closest to our work for general quantum circuits
was done by Paler et al. where they studied fault detection
and diagnosis under the “single missing gate fault” (SMGF)
model [15]. In this work, basis states were used as input states
and output states were measured in the standard basis1. When a
circuit is run many times on the same input state and the output
states are measured, we obtain a (probability) distribution on
the observations which is called a tomogram. The authors
first used a quantum circuit simulator to numerically obtain
the output distributions for both the fault-free and the faulty
circuits. Then they ran the given circuit many times to generate
a tomogram. They analysed the tomogram with respect to the
two distributions to identify whether the circuit is circuit is
faulty or fault-free. However, there is no reason to believe that
arbitrarily selecting input states or measuring output states in
the standard basis is the best way to go about testing quantum
circuits. Our work adds support to this claim by suitably
choosing input states and measurement operators as part of
test sets. This was also suggested by Biamonte et al. [17] but
for different fault models and different types of circuits.

The “LRM technique” suggested by Paler [18] bears a
resemblance to our methods. In this technique, two sets of
gates, Spre and Spost, are applied to the circuit before and after
all other gates are applied. These gates are chosen to handle
certain gates (like the Phase gate) that only modify some (non-
global) phase. Application of Spre is equivalent to choosing a
non-|0 . . . 0〉 input state whereas application of Spost is akin
to choosing a non-standard measurement operator. The LRM
technique prescribes the same Spre and Spost gates irrespective
of the circuit to be tested, whereas, our method can also be
viewed as a selection of the optimal gates for every circuit.

1The authors do not mention specific measurement operators. Our inference
is based on the fact that they used the quantum circuit simulator QuIDDPro
which is only able to measure in standard basis.
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B. Contribution

Our work answers four major questions regarding single
gate faults in quantum circuits. First, we resolve the question
of detectability of single gate faults. This problem is NP-
hard for irreversible logic circuits and trivial for reversible
ones. We show that the detection of any such fault in a
quantum circuit using tomograms is inherently error-prone
due to the probabilistic nature of output. But nevertheless, all
faults are detectable with some positive probability. Since a
missing gate can be modelled by replacing the gate by an
identity gate, if the operator for a gate is almost similar to the
identity operator (e.g., Rz(π/212) that maps |0〉 → |0〉 and
|1〉 → exp(iπ/212) |1〉, then detecting whether it is present
or missing is going to be difficult, if not impossible (both the
faulty and fault-free circuits behave almost identically). How-
ever, formal justification of this statement was not available
so far which we provide here.

Next, we describe how to generate test sets for a circuit
by solving quadratic programs and numerically simulating
the circuit. Our test set consists of one input state and one
measurement operator for each gate in the circuit. Integer
linear programs have been used to generate test sets earlier [9],
however, the size of those programs are exponential on the
number of input-output bits. In contrast, the size of our
quadratic program is exponential only on the number of inputs
of the gate which is quite small in practice (usually at most
three). Using high performance quantum circuit simulators, it
is possible to generate test sets for any quantum circuit.

Finally, we provide algorithmic solutions for testing a
circuit for fault and diagnosing which gate could be faulty
by generating and analysing tomograms obtained by running
the tests in a test set. We use ideas from hypothesis testing to
design randomised algorithms which cleverly apply the tests
in a careful manner to minimise any chance of error. A notable
improvement compared to the state-of-the-art technique is with
respect to detection of missing gates that apply a phase-change
to only some input states, e.g., the Phase gate (that maps
|1〉 → i |1〉 but leaves |0〉 unchanged). It was earlier reported
that it is difficult to detect if such gates are missing and the
“LR modifier technique (with slicing)” was proposed to handle
them [15], [18]. First, we show that no formal relationship
exists between detectability of a gate and its phase-change
behaviour. For example, we show that a Pauli-Z gate can be
detected easily, a Phase gate can be detected with small effort
and a rotation gate Rz(π/212) gate is actually hard to detect
(refer to Table I) – all three are gates which only modify phases
of input states. Secondly, we wanted to avoid “slicing” since it
requires testing portions of a circuit which may not be possible
in some implementations. Finally, we empirically show that
our approach, without any special handling of such gates, is
more efficient and superior than the LR modifier technique in
detecting Phase and similar gates.

The analytic and experimental results in this paper demon-
strate that it is possible to achieve high efficiency in fault
detection and diagnosis even for quantum circuits if the
classical techniques are carefully adopted keeping in mind the
quantum nature of the circuits.

C. Organisation

Following is the plan for the rest of this paper. We formally
state our problem and highlight the main results in Section II.
Section III contains the main technical tools and Section IV
describes the essential tables and subroutines on which our
algorithms are developed. The fault detection algorithms are
presented in Section V where we also prove optimality proper-
ties of our tests. We similarly present and theoretically analyse
our fault diagnosis algorithm in Section VI. In Section VII,
we evaluate the performance of our algorithms in comparison
with the best known approach.

For background on quantum circuits, we refer the reader
to the excellent book by Nielsen and Chuang [19]. ATPG for
classical circuits has been around for a while and any book on
ATPG (e.g., by Bushnell and Agrawal [2]) can be consulted.

II. SUMMARY OF RESULTS

Since quantum circuits have inherently probabilistic output
so any tomogram-based method must be prepared to handle
erroneous solutions. Our detection and diagnosis algorithms
require an input parameter δ ∈ (0, 1) indicating the maximum
allowed probability of error and their running time is polyno-
mial in ln

(
1
δ

)
.

We will denote by C the circuit to be diagnosed which
acts on n qubits and represent its gates by G1, G2. . . . Gs
when enumerated in the standard manner from left to right
(see Figure 2a). To simplify our notations, we will use
the phrase “G0 is faulty” to mean that “C is fault-free” 2.
In the single-gate fault model that we consider, at most
one of these s gates is faulty, and moreover, the “fault
is known”, i.e., the exact operator corresponding to the
faulty gate is also available to us. The operators for the
fault-free and faulty i-th gate are denoted by Gi and Gif ,
respectively (Gif is set to the identity operator under the
SMGF model). Let C0 denote a circuit in which no gate
is faulty, and Ci denote a circuit in which (only) the i-th
gate is faulty. That is, C0 = Gs . . . Gi+1GiGi−1 . . . G1 and
Ci = Gs . . . Gi+1GifG

i−1 . . . when the circuits and gates are
represented as operators.

Problem statement: Given a parameter δ ∈ (0, 1) denoting
the maximum allowed probability of error, we want to solve
the following two problems with respect to the SMGF model.

[Detection problem] Given a circuit C, we want to detect
if C is fault-free or if any one of its gates is faulty. According
to the above notation, we want to determine if C can be
represented as C0 (in which case C would be fault-free) or as
Cj for some non-zero j (in which case C would be faulty).
Note that, in the latter case, we only need to establish that
j > 0, but the explicit value of j need not be determined.

[Diagnosis problem] Given a circuit C which is known to
be faulty, find which gate is faulty. Technically, given a C,
find non-zero j such that C = Cj .

2G0 is not an actual gate in C, which is composed of G1, . . . Gs; the
phrase is used for notational uniformity in expressions.
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Fig. 2. A quantum circuit (left) and the pipeline for testing it (right)

The first novel contribution of this work is a characterisation
of a “hard to detect” faulty gate based on the probability of
error in detecting it.

Definition 1. For the i-th gate of a circuit C, ∆(i) ∈ [0, 0.5]
is defined as the minimum probability of error in detecting
whether that gate is faulty or not, given that other gates are
not faulty, using a single measurement of the circuit output.
The minimum is taken over any measurement operator and
any input state.

We show how to relate ∆(i) to the eigenvalues of the
operator corresponding to the i-th gate and its faulty version.
So, essentially, ∆(i) is a property of the gate and its fault
model and is completely independent of C. While ∆ = 0.5
indicates an “untestable fault” (that is impossible to detect), ∆
close to 0 implies that the fault is easy to detect. To allow our
algorithms to run within manageable limits, they take another
user-defined hardness parameter λ ∈ (0, 0.5] and does not look
for faults for which ∆ ≥ λ.

We define a fault to be “trivial” if it changes only the global
phase of the gate operator, say, from G to eiθG, for some

non-zero θ; for example, X =

(
1 0
0 1

)
to iX =

(
i 0
0 i

)
.

On any input state |ψ〉, if |ψ′〉 is the output state of the
fault-free circuit, then the output state of the faulty-circuit
would be eiθ |ψ′〉. Global phases have no observable effect
upon measurement, and so both the output states would appear
identical to any measurement operator. Therefore, a circuit
with either G or eiθG are identical for all practical purpose,
and furthermore, it is not possible to test such circuits solely
using tomograms. This was also observed earlier by Perkowski
et al. [13] who classified quantum faults on the basis of their
detectability; they claimed that trivial faults belong to those
faults which are untestable. Our next contribution is a tight
version of their claim in which we show that “trivial faults” are
exactly the only untestable faults. Therefore, unlike classical
logic circuits but like classical reversible circuits, it is easy to
determine if a single-gate fault is testable or untestable.

Lemma 2. A trivial single-gate fault is untestable. Vice versa,
if a single-fault is untestable then it must be trivial. Therefore,
trivial faults are untestable and all other faults are testable.

For the faults that are testable, we adopt the basic approach
for classical reversible circuits by leveraging the fact that
quantum circuits have both the controllability and observ-
ability properties. The outline of the process is illustrated in

Figure 2b. Take for instance, the quantum circuit illustrated in
Figure 2a and denote it by C. Suppose we want to know if
the gate G4 in that circuit is missing or not (our results hold
for any single gate fault model – for this example, we use
the SMGF model). For some input state |φ〉, let |ψ〉 be the
state of qubits at stage t1 and |ψ′〉 be the state at stage t2. If
G4 is missing, then |ψ′〉 = |ψ〉 and otherwise, we can write
|ψ′〉 = G4 |ψ〉. For fault-activation, we want |φ〉 to be such
that G4 |ψ〉 is very different from |ψ〉. For fault-propagation,
we want to ensure that this difference is also observable at the
output after measurement. Due to the observability property of
C, any difference between |ψ〉 and G4 |ψ〉 is carried forward
to the corresponding output states. And by the controllability
property, there is a unique |φ〉 which will generate |ψ〉 at
stage t1. Therefore, we need to carefully choose |ψ〉 and then
determine |φ〉 accordingly.

Paler et al. defined a binary tomographic test (BTT) as an
input state for a quantum circuit analogous to a test vector
for classical circuits [15]. However, the observed output of a
circuit is determined not only by input state but also by the
operators used for measurement. Therefore, we extend BTTs
to also include the most appropriate measurement operators
corresponding to every input state; thus BTT for us will
mean both an input state and a corresponding measurement
operator. Our second contribution is a quadratic programming
based approach to obtain optimal BTT for any gate.

Theorem 3. There is a BTT with probability of error ∆(i)
which can detect if the i-th gate of a circuit is non-trivially
faulty or fault-free, given that all other gates are not faulty. If
efficient quantum circuit simulators are used, the BTT can be
generated in time that is exponential in the number of qubits
of the i-th gate.

Even though our approach can be theoretically exponential
in the number of qubits that the circuit acts on, since practical
circuits are constructed using small gates (acting on 1 to 3
qubits), it is possible to compute BTT very efficiently even for
large circuits with many gates. Several simulators are available
that can simulate such circuits, even with many inputs [10].

It appears straightforward to design an ATPG method by
constructing a test set that is composed of BTTs and then
observing the circuit output on this test set. However, since
the measurement output of a quantum circuit is a sample from
a probability distribution, unlike classical circuits, multiple
observations may be required to produce a tomogram that
is close to the underlying output distribution. Furthermore,
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even this tomogram can change from one round of testing
to another; so, the naive approach of applying each BTT
in the test set in some sequence may not be effective. Our
next contribution is a randomised fault-detection algorithm
that uses the Kullback-Leibler divergence and other tools from
hypothesis testing to prescribe efficient employment of BTTs.
The proposed testing method therefore involves two stages,
first, creating the tomograms from sufficient number of outputs
and secondly, processing the tomograms. Since individual
BTTs ensure optimal error for every faulty gate, we would
like to claim that our detection algorithm is the most efficient
among all detection algorithms using tomograms. Clearly, if
the circuit has no trivial faults, then fault-coverage is 100%.

Theorem 4. For any δ ∈ (0, 1) and λ < 0.5, all non-trivial
single gate faults (whose ∆ < λ) in any quantum circuit can
be detected with error at most δ. The test set consists of one
BTT for each gate and the number of measurement outputs
the testing algorithm requires is O(max{s, ln 1

δ ,
1

1
2−λ
}).

Our final contribution is a fault diagnosis algorithm that
builds upon the detection algorithm. When acting on a faulty
circuit, the algorithm returns a possible set of suspected faults,
the fewer the better. The algorithm uses a test set consisting of
s BTTs and the number of outputs it requires is polynomial in
s.We show empirically that it performs quite well in practice
by almost uniquely identifying the actual fault site.

We claim that it will be expensive to run a quantum circuit
multiple times to measure its output, and so, according to us,
the crucial component in testing efficiency is the number of
times a circuit is run and its measurement outcome recorded.
Accordingly, we define “M-cost” (for measurement cost) as
the number of required measurement outcomes and treat it as
the measure for testing complexity. We compare our approach
with the state-of-the-art technique by Paler et al. [15] and show
significant improvements in testing complexity.

The different components of our solutions are illustrated in
Fig. 2b which we describe in the next four sections.

III. DETECTING A SPECIFIC FAULTY GATE

This section describes our main tools. In the scenario that
all but the i-th gate are fault-free, we want to detect if this
gate is faulty or not.

For the sake of brevity, we will use the following notation
in this section: ∆ = ∆(i), G = Gi, Gf = Gif , C = C0 and
C ′ = Ci. Thus, we want to know if the ith-gate is G or Gf .
Broadly, our approach will be to:

1) find an input state |φ〉 such that |ψ〉 = C |φ〉 and |ψ′〉 =
C ′ |φ〉 are at the farthest “distance” possible.

2) find measurement operators which can distinguish be-
tween those two faraway states |ψ〉 and |ψ′〉 with minimal
probability of failure.

Techniques for answering such questions for general quan-
tum states operators are well-known [20], [21]. We show how
to apply those techniques to our specific problem.

A. Optimal input state
The appropriate measure of “distance” for pure quantum

states with respect to distinguishability is the trace distance

defined by D(|ψ〉 , |ψ′〉) =
√

1− | 〈ψ |ψ′〉 |2. Trace distance
is also equal to the maximum L1 distance of the probability
distributions obtained from the two states upon any measure-
ment [19]; given one of these states chosen equally at random,
any algorithm is bound to incur at least (1−D)/2 probability
of error while identifying the state.

Definition 5. Given two operators G and Gf , we say that a
state |φ〉 is a (G,Gf )-separator (similarly, (C,C ′)-separator)
if this state, given as input, maximises the trace distance
between G |φ〉 and Gf |φ〉 (respectively, C |φ〉 and C ′ |φ〉).

This definition immediately leads to the following lemma.

Lemma 6. ∆ = 1
2

(
1 − D(C |φ〉 , C ′ |φ〉)

)
where |φ〉 is a

(C,C ′)-separator state.

Therefore, our first goal is to find a (C,C ′)-separator input
state |φ〉 which minimises | 〈ψ |ψ′〉 |. Our main observation
here is that we can decompose our circuits into common
sub-circuits excluding the i-th gate: C = C2GC1 and C ′ =
C2GfC1. Let S = G†Gf . Without loss of generality, we can
consider that G (hence, G′ and S) acts on all n qubits (maybe
by tensoring with an identity operator of suitable dimensions).

Let the the eigenvalues of S be denoted by e−iθ1 . . . e−iθm
(including duplicates) and the corresponding eigenvectors by
|v1〉 , . . . |vm〉. Consider this quadratic optimisation problem.

OPT(S) : min
∑
j

a2
j +

∑
j 6=k

ajak cos(θj − θk) (1)

where
∑
j

aj = 1, 0 ≤ aj ≤ 1

Let ā = {a1 . . . am} be a solution to this optimisation
problem: Observe that minimising Eqn. 1 is equivalent to

minimising
√∑

j

a2
j +

∑
j 6=k

ajak cos(θj − θk)

=
∣∣∣∑
j

aj cos θj − i
∑
j

aj sin θj

∣∣∣ =
∣∣∣∑
j

aje
−iθj

∣∣∣
= | 〈φ′|S |φ′〉 | = | 〈φ′|G†Gf |φ′〉 |

where, |φ′〉 =
∑
j

√
aj |vj〉 is a state on n qubits. Therefore

the optimum ā for OPT(S) also minimises | 〈φ′|G†Gf |φ′〉 |,
which makes |φ′〉 a (G,Gf )-separator. We can now choose
|φ〉 = C†1 |φ′〉 as our required (C,C ′)-separator in-
put. Since | 〈φ′|S |φ′〉 | = | 〈φ|C†1G†C†2C2GfC1 |φ〉 | =
| 〈φ|C†C ′ |φ〉 | = | 〈ψ |ψ′〉 |, the optimum ā also minimises
| 〈ψ |ψ′〉 | and this minimum value is simply |∑j aje

−iθj |.
This gives us our main technical lemma.

Lemma 7. Let aj , θj and vj be as defined in the
description of OPT((Gi)†Gi

f ) above. Then the state∑
j

√
aj |vj〉 acts as (Gi, Gif )-separator and ∆(i) =

1
2

(
1−

√
1− |∑j aje

−iθj |2
)
∈ [0, 1

2 ].

If the fault in question belongs to the single missing gate
fault model, then we can treat it is a special case of the above
where Gf = I and therefore S = G†.
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If G acts on n′ qubits and n′ � n (say, n′ = 1 or 2), then it
is possible to solve OPT(S) using the larger n-qubit operator
In−n′⊗Gi. This may be computationally expensive, so a better
alternative is to let S = G†Gf as before, and let T = In−n′⊗S
be the extension of S to n qubits. If {(e−iθj , |vj〉)} are the
eigen-pairs of S then it is easy to see that {(e−iθj , |vj〉 ⊗
|0〉⊗n−n

′
)} are the eigen-pairs of T . Thus our required input

state can be derived as |φ〉 = C†1
(
|φ′〉 ⊗ |0〉⊗(n−n′) ) where

|φ′〉 is a (G,Gf )-separator input state. For example, if G is
a single qubit gate, then we only need to store that |φ′〉 is
1√
2

(|v1〉+ |v2〉) where |v1〉 and |v2〉 are the eigenvectors of
G†Gf , irrespective of the value of n.

It should be obvious that our method of decomposing a
circuit into portions before and after the gate in question can
also be used for multiple missing/defective gate faults as long
as the faulty gates can be grouped together and the circuit can
be sliced around them. For example, our method is applicable
to multiple gate faults if they act on distinct set of qubits,
and/or are adjacent to each other; trivial extension is required
to the computation of optimal state described earlier.

We end this subsection with a proof of Lemma 2 which
characterises faults with ∆ = 0.5 as the trivial faults.

Proof of Lemma 2. Consider a trivial fault, i.e., Gf = eiαG
for some G acting on w qubits. Then, S = eiαI and this has
one eigenvalue eiα with multiplicity m = 2w. The solution of
the optimisation problem can be readily seen to be ai = 1

m .
This gives us ∆ = 0.5 which implies an untestable fault.

For the other direction, consider some gate G and its
untestable faulty version Gf . Therefore, ∆ = 0.5 which
implies that |∑j aje

−iθj |2 = 1. Suppose that at least two
of θj’s are distinct. It is easy to verify that any convex
combination of such a set of points on the unit circle in the
complex plane has modulus less than 1. Therefore, all the
θj must be equal. Since S is diagonalisable (it is unitary),
G†Gf = S = V · e−iθjI · V −1 for some V . Therefore, G†Gf
is same as e−iθjI which implies that Gf = e−iθjG, i.e., the
fault simply changes the global phase of G.

B. Optimal measurement operators

Once we have obtained the optimal input state |φ〉, we
can compute the two possible output states |ψ〉 = C |φ〉
and |ψ′〉 = C ′ |φ〉. Quantum states are manifested only by
their measurement outputs. It is thus important to design and
implement measurement operators that are able to distinguish
between |ψ〉 and |ψ′〉, and thereby determine if the circuit
in question is C or C ′. However, unlike input states, mea-
surement operators depend on the actual circuit and has to be
computed once for every circuit and every fault model.

The question of distinguishing between two given quantum
states is one of the classical problems of quantum computing
[22]. Two states can be differentiated (using measurements)
with certainty if and only if they are orthogonal. So, if Gf is
almost same as G, then obviously no measurement should be
able to distinguish between them with high confidence.

There are two known modes of distinguishing between a
pair of states. Helstrom measurement is a two-output (von

|ψ′〉

|ψ〉|ω+〉

|ω−〉

keiκ

∆

∆

Fig. 3. Schematic diagram for the Helstrom projective measurement basis.
The angles represent the inner product between the corresponding state
vectors.

Neumann) projective measurement which minimises the error
of incorrect labelling [20]. If we prohibit incorrect outcome
and instead allow our measurement operators to either label a
state with certainty or report “§”(inconclusive), then we would
be performing unambiguous state discrimination (USD) [23]–
[25]. We will use Helstrom projective measurement in the rest
of this paper for explaining our technique; however, we could
have also used USD for doing the same.

The concept behind Helstrom projective measurement is
explained in Figure 3. Our derivation follows similar approach
as in [20], [21] but is in a form that suits our problem.

First we create an orthonormal basis |ω+〉 and |ω−〉 which
spans |ψ〉 and |ψ′〉. This basis will be used for measurement
and we will infer the state as |ψ〉 or |ψ′〉 upon measurement
outcome |ω+〉 or |ω−〉, respectively. We want to minimise
the probability of error (when state is |ψ〉 but outcome is
incorrectly |ω−〉 and similarly for the other pair); so the basis
states should be maximally away from the output states, i.e.,
| 〈ω− |ψ〉 |2 = | 〈ω+ |ψ′〉 |2.

We will represent by keiκ the complex number 〈ψ |ψ′〉 =∑
j aje

−iθj in which aj’s are the solution of OPT(S) and
eiθj are the eigenvalues of S = G†Gf .

We first represent our states in terms of our basis states,
i.e., |ψ〉 = α1 |ω+〉+ β1 |ω−〉 and |ψ′〉 = α2 |ω+〉+ β2 |ω−〉.
Without loss of generality, we can take α1 as a real number
r1. The condition of equal probability of error enforces these
representations: β1 = r2e

ix1 for some real r2 =
√

1− r2
1 ,

α2 = r2e
ix2 and β2 = r1e

ix3 . Equating keiκ = 〈ψ |ψ′〉 =
r1r2e

ix2(1 + ei(x3−x1−x2)), we obtain one possible solution:
x1 = 0, x2 = κ, x3 = κ and r1,2 =

(√
1 + k ±

√
1− k

)
/2

which produces this basis:

|ω+〉 =
−r1

r2
2 − r2

1

|ψ〉+
r2e
−iκ

r2
2 − r2

1

|ψ′〉

|ω−〉 =
r2

r2
2 − r2

1

|ψ〉 − r1e
−iκ

r2
2 − r2

1

|ψ′〉

Therefore, we obtain the three following projectors to
distinguish between |ψ〉 and |ψ′〉: {P0 = |ω+〉 〈ω+| , P1 =
|ω−〉 〈ω−| , P§ = I − P0 − P1} with outcomes 0, 1 and §,
respectively. The outcome 0 corresponds to the output state
being |ψ〉 and hence implies that the circuit is (probably) fault-
free; similarly, outcome 1 implies that the i-th gate is probably
faulty. Outcome § is never observed if circuit is fault-free or
if the i-th gate is faulty; therefore, outcome § immediately
signifies that the circuit has fault at some other gate.
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C. Optimal BTT

Without loss of generality, we will henceforth assume that
all our faults are non-trivial, i.e., ∆ < 0.5.

Definition 8. Binary tomographic test for the i-th missing
gate, denoted by BTT (i), is defined as the combination of
a (C0, Ci)-separator input and corresponding measurement
operator {P0, P1, P§}.

We capture the result of application of any BTT on any
circuit C by the probability distribution on the measurement
outcomes.

Definition 9. µi,j is defined as the probability distribution
{p(0), p(1), p(§)} of measurement outcomes when BTT (i) is
employed on circuit Cj .

The probability of error after one measurement would
be at most | 〈ψ |ω−〉 |2 = r2

2 =
(
1−
√

1− k2
)
/2 =(

1−
√

1− |∑j aje
−iθj |2

)
/2 which matches the minimum

probability of error in distinguishing |ψ〉 and |ψ′〉 by any
projective measurement. This establishes the following lemma
on the optimality of a BTTs error.

Lemma 10. The output distribution of BTT (i) on the fault-
free circuit C0 is µi0 = {1−∆(i),∆(i), 0} and the distribu-
tion on the faulty circuit Ci is µii = {∆(i), 1−∆(i), 0}.
Discussion of Theorem 3. Lemma 10 shows that BTT (i) can
optimally distinguish between a fault-free gate and a faulty
gate, as long as it is a non-trivial fault.

The computationally significant steps are that of determin-
ing the (G,Gf )-separator and calculating the input state to the
circuit and the optimal measurement operator.

The latter involves (a) determining the input state |φ〉 to the
circuit from the (G,Gf )-separator |φ′〉 (b) determining the
output states |ψ〉 and |ψ′〉 of the fault-free and faulty circuits
from the input state, and (c) determining the measurement
operator {P0, P1, P§} on the output states. Many efficient pro-
gramming platforms and libraries exist today to numerically
calculate these states and operators.

The former step involves solving the quadratic program (1)
on 2w variables, where w is the number of qubits of the
i-th gate. Quadratic programming is in general an NP-hard
problem, but we believe its use in deriving the BTT is not a
computational hurdle for a couple of reasons. First, the number
of variables is exponential only in the dimension of the gate
involved, which is usually quite small in literature we have
encountered so far; also, it is also likely that synthesis of
gates acting of many qubits is going to be difficult. Secondly,
observe the interesting fact that the separator input for a gate
in a circuit depends fundamentally on the gate in question
and corresponding fault model. It does not depend at all on
the portion of the circuit coming after the faulty gate, and
its dependence on the portion of the circuit before the faulty
gate is really incidental. Therefore, it is feasible to have a
pre-computed table of (G,Gf )-separators for different gates
under common fault models. The required separator input for
any circuit can be obtained by running the first portion of the
circuit in reverse on a gate-separator input. Thus, the major

H

H

R
y
(π
/6

)

|q3〉

|q1〉

|q2〉

R
z
(π
/1

6)

Fig. 4. Benchmark circuit 3qubit-CNOT on 3 qubits with 6 gates. The 2-qubit
rotation gates apply the rotation operations to both the qubits.

computation tasks of eigen-decomposition of S and solving
OPT(S) can be done only once and reused as needed.

Table I shows the probability of error in detecting SMGF
faults for some of the commonly used quantum gates. The
table demonstrates that (a) for most gates (for example,
Hadamard), missing gate faults can be easily detected with cer-
tainty, and (b) there are some gates (for example, Rz(π/212))
for which SMGF will be quite hard to detect.

IV. TEST GENERATION

Algorithm 1 Test generation stage
Input: C0 = 〈G1 . . . Gs〉: Fault-free gates

{G1
f , . . . G

s
f}: Faulty gates

Output: T : BTT table
∆: Fault error table

1: Initialise empty s× (1 + s) table T and s× 1 table ∆
2: for i = 1 to s do
3: Break C0 into C1 and C2 around i-th gate
4: Compute Ci from C0 and Gif
5: {(e−iθ1 , |v1〉), . . . (e−iθm , |vm〉)} ← eigen-

decomposition of (Gi)†Gif
6: ~a← solution of OPT((Gi)†Gi

f )
7: Compute ∆[i]← |∑j aje

−iθj |
8: Compute |φ′〉 =

∑
j

√
aj |vj〉 and |φ〉 = C†1 |φ′〉

9: Compute |ψ〉 = C0 |φ〉, |ψ′〉 = Ci |φ〉
10: Compute |ω+〉 and |ω−〉
11: Compute P0, P1, P§
12: for j = 0 to s do
13: Compute |α〉 = Cj |φ〉
14: Compute pk = 〈α |Pk|α〉, for k = 0, 1, §
15: T [i, j]← (p0, p1, p§)
16: end for
17: end for
18: return T,∆

In this section we use the BTT s defined in Section III
to generate a test-set that, for us, consists of BTT-table and
a fault-error table. The BTT-table is a generalisation of
the fault-table constructed by Aligala et al. [16]; for each
BTT , it contains the corresponding probability distribution
on outcomes.

The test generation stage (illustrated in Algorithm 1) takes
as input a description of the circuit, along with each of
the fault-free and faulty operators. First, for each gate Gi,
we construct the input state and measurement operator for
BTT (i). Then, we construct a BTT table with s rows and
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TABLE I
MINIMUM PROBABILITY OF ERROR (∆) FOR DETECTING (SINGLE) MISSING GATE. THE GATES IN THE CLIFFORD+T SET OF QUANTUM GATES ARE

MARKED IN bold – THIS SET IS GAINING POPULARITY FOR CONSTRUCTING FAULT-TOLERANT QUANTUM CIRCUITS.

Gate Error prob. Gate Error prob. Gate Error prob. Gate Error prob. Gate Error prob. Gate Error prob.

Hadamard 0.00 Pauli-Z 0.00 CNOT 0.00 Phase = Rz(π
2

) 0.15 Rz(π/16) 0.415 Rz(π/28) 0.495
Pauli-X 0.00 Pauli-Y 0.00 Toffoli 0.00 T = Rz(π/4) 0.31 Rz(π/32) 0.458 Rz(π/212) 0.4997

(1 + s) columns whose (q, r)-th cell contains the distribution
µq,r when BTT (q) is applied to circuit Cr and a fault-error
array whose r-th entry ∆(r) contains the minimum possible
probability of error in distinguishing between C0 and Cr.

BTT table and fault-error array for a benchmark circuit
3qubitcnot (illustrated in Figure 4) are given in the Table II. It
can be readily inferred by comparing the C0 and C5 columns
that detecting missing G5 gate is more error-prone and is going
to require lots of samples.

Next we describe some important properties of the test-set
that are used by upcoming detection and diagnosis algorithms.

A. Test-set properties

If ∆(r) is close to 0.5, then C0 is almost similar to Cr and
then there is a large chance of error in distinguishing between
C0 and Cr (it becomes impossible when ∆ = 0.5). So,
we use a subroutine CleanupBTTTable(λ) which takes
a user-parameter λ ∈ (0, 0.5) and ignores all faults with
error more than ∆. It does so by removing the (1 + r)-th
column (corresponding to Cr) and r-th row (corresponding to
BTT (r)) from the BTT table.

Suppose, we apply a BTT on a circuit several times and
record the distribution of outcomes. We use τ(i, C,m) to
denote this distribution obtained by applying BTT (i) on C ∈
{C0, . . . , Cs} m number of times. After sufficient number
of times of applying the test, the distribution is expected to
converge towards µi,j . But more importantly, for any i, m
and Cj , τ(i, 0,m) = (a1, a2, 0) and τ(i, i,m) = (a3, a4, 0)
for some a1, a2, a3, a4. So, in essence, we need to choose
a large enough m such that a sampled distribution τ can be
confidently attributed to come from either µi,0 or µi,i. We will
use the Kullback-Leibler divergence, denoting it by DKL, for
testing closeness of τ with the source distributions. The next
lemma states the minimum number of samples needed.

Lemma 11. Choose any δ ∈ (0, 1) and some i ∈
{1, . . . s} such that ∆(i) 6= 0.5. If m is selected as⌈

ln(1/δ)

− ln(2
√

∆(i)(1−∆(i)))

⌉
, then the following events have a prob-

ability at most δ.
(a) DKL(τ‖µi,i) < DKL(τ‖µi,0) where τ is the distribution

of m samples drawn from µi,0.
(b) DKL(τ‖µi,i) > DKL(τ‖µi,0) where τ is the distribution

of m samples drawn from µi,i.

Proof. We will give the proof for part (a). Part (b) can be
proved similarly.

Let p denote 1 −∆(i). Note that for any i, µi,0 = (p, 1 −
p, 0) and µi,i = (1 − p, p, 0). Since τ is obtained from µi,0,
τ(§) = 0 and τ(0) can be written as x/m where x follows
the distribution Binomial(m, p).

Pr[DKL(τ‖µi,i) < DKL(τ‖µi,0)]

= Pr

 ∑
z∈{0,1,§}

τ(z)
lgµi,0(z)

lgµi,i(z)
< 0


= Pr

[
(m− 2x) lg

p

1− p > 0

]
= Pr[x < m/2] since, p > 0.5

≤ exp

(
−mDKL

(
(0.5, 0.5)‖(1− p, p)

))
= exp

(
m[1 +

1

2
ln p(1− p)]

)
The last inequality is an application of the Chernoff-Hoeffding
bound. The required bound on m follows immediately by
setting the final expression to δ.

We use η(i, δ) (or ηi in short when δ is fixed) to denote
the above bound m on the number of samples required for
BTT (i) for a particular δ. The subroutine NumSamples()
computes ηi for all i = 1 . . . s.

Let ηmax denote the maximum sample size and ηavg denote∑s
i=1 ηi/s. We now upper bound all these values.

Lemma 12. Suppose for some i, ∆(i) ≤ λ for some λ ≤ 1/2.

Then, {ηi, ηmax, ηavg} ≤
ln(1/δ)

2
(

1
2 − λ

)2 + 1.

TABLE II
BTT-TABLE AND FAULT-ERROR ARRAY FOR CIRCUIT 3QUBITCNOT WITH SINGLE MISSING GATE FAULTS

Test C0 C1 C2 C3 C4 C5 C6

BTT(1) (1.00,0.00,0.00) (0.00,1.00,0.00) (0.28,0.09,0.63) (0.30,0.50,0.20) (0.92,0.04,0.05) (0.99,0.00,0.01) (0.91,0.00,0.09)
BTT(2) (1.00,0.00,0.00) (0.02,0.13,0.85) (0.00,1.00,0.00) (0.50,0.00,0.50) (0.87,0.00,0.13) (0.99,0.00,0.01) (0.76,0.00,0.24)
BTT(3) (1.00,0.00,0.00) (0.73,0.13,0.15) (0.50,0.00,0.50) (0.00,1.00,0.00) (0.87,0.06,0.07) (0.98,0.00,0.02) (0.86,0.00,0.14)
BTT(4) (0.75,0.25,0.00) (0.75,0.25,0.00) (0.38,0.13,0.50) (0.00,0.00,1.00) (0.25,0.75,0.00) (0.74,0.24,0.02) (0.19,0.07,0.74)
BTT(5) (0.60,0.40,0.00) (0.29,0.20,0.52) (0.20,0.30,0.50) (0.55,0.38,0.07) (0.52,0.35,0.13) (0.40,0.60,0.00) (0.25,0.25,0.50)
BTT(6) (1.00,0.00,0.00) (0.33,0.29,0.38) (0.06,0.22,0.72) (0.10,0.42,0.48) (0.87,0.02,0.11) (0.99,0.01,0.00) (0.00,1.00,0.00)
∆ N.A. 0 0 0 0.25 0.4 0
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Proof. It suffices to lower bound − ln(2
√

∆(i)(1−∆(i))) by
2( 1

2 − λ)2. This is done as follows.

− ln(2
√

∆(i)(1−∆(i)))

≥ − ln(2
√
λ(1− λ))

(since, ∆(1−∆) is increasing in [0, 0.5])

= − ln 2− 1

2
lnλ− 1

2
ln(1− λ)

= −1

2
[ln(1 + 2ε) + ln(1− 2ε)] (let ε = 1

2 − λ)

≥ −1

2

[
−2

(2ε)2

2
− 2

(2ε)4

4
− . . .

]
≥ 2ε2 = 2(

1

2
− λ)2

V. DETECTION OF SINGLE-FAULT CIRCUITS

In the last two sections we discussed how to efficiently
obtain a test set. In this section we give an algorithm that uses
the test set to decide if a circuit is faulty or fault-free, under
the SMGF model: formally, given some Cj as the circuit C
for testing, our goal is to detect whether j = 0 or j > 0. The
output of quantum circuits being probabilistic, our approaches
will be prone to detection error. We define two types of error:
false-positive (FP) when a fault-free circuit is claimed to be
faulty and false-negative (FN) when the converse happens and
our algorithms will only allow limited scope of such errors.

Our algorithms for fault detection are presented in Algo-
rithms 2 and 3. At the core of both of them is the subroutine
RunBTT(C, i, T, ηi) which runs BTT (i) on the given circuit
C sufficient number of times specified by ηi. It then compares
the output distribution thus obtained with the two distributions
µi,0 and µi,i and returns the distribution from which τ is
more likely to have been derived. Recall that the number of
samples ηj is sufficiently large to ensure, with high probability,
that C is faulty if and only if there exists some BTT (i) for
which τ(i, C, ηi) is closer to µi,i than µi,0. Furthermore, as
an additional optimisation, if RunBTT finds some § among the
outcomes of BTT (i), then it declares that the circuit cannot
be fault-free (as per Lemma 10).

Algorithm 2(FP) simply chooses a random BTT and uses
it to decide if the circuit or not. It ensures that false-positive
is at most δ, i.e., a fault-free circuit is seldom reported as as
faulty. On the other hand, a faulty-circuit (say Cj) is reported
correctly (with probability 1− δ) when i = j; therefore, false-
negative probability is at most 1−(1−δ)/s. Clearly, its M-cost
can be at most ηmax with an expected value of ηavg .

The other one, Algorithm 3(FN) guarantees low false-
negative, i.e., it ensures that a faulty circuit is reported as
faulty with probability at least 1 − δ. It does so by serially
running all the BTT until it finds one that indicates that the
circuit is faulty; it returns fault-free only if none of the tests
indicate any fault with the circuit. If C = Cj , then BTT (j)
will surely detect C as faulty. On the other hand, a fault-
free C is reported as faulty only if all tests report “fault-
free”; thus, false positive probability is 1 − (1 − δ)s ≈ sδ.

Input: T : BTT table
∆: Fault error table
s: Number of gates
C: Circuit to be checked for fault
δ: Max. probability of error
λ: Threshold of fault error

Output: Faulty or Fault-free

Algorithm 2 Fault Detection (FP)

1: CleanupBTTTable(λ)
2: [η1, η2, . . . ηs]← NumSamples(δ)
3: i←R {1, . . . , s}
4: return RunBTT(C, i, T, ηi)

Algorithm 3 Fault Detection (FN)

1: CleanupBTTTable(λ)
2: [η1, η2, . . . ηs]← NumSamples(δ)
3: Sort BTTs in increasing ∆
4: for BTT i = 1 to s (in sorted order) do
5: result← RunBTT(C, i, T, ηi)
6: if result == Faulty then
7: return Faulty
8: end if
9: end for

10: return Fault-free

function RUNBTT(C, i, T, ηi)
Run BTT (i) on C ηi times
τ ← distribution of outcomes
if τ(§) 6= 0 then

return Faulty
end if
d1← DKL(τ‖µi,0)
d2← DKL(τ‖µi,i)
if d1 > d2 then

return Faulty
else

return Fault-free
end if

end function

We do an additional optimisation in this algorithm. We first
sort the BTT s before using them sequentially (Line 3). This
is because among all orderings of BTT s, the one that leads to
the smallest average number of samples is the one in which the
tests are sorted according to the increasing number of samples
ηi (this is exactly the property of minimum average waiting
time in the “Shortest Job First” scheduling algorithm). This
ensures that Algorithm 3 uses the least number of samples
(averaged across faults). The M-cost in this case is always
sηavg .
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Proof of Theorem 4. Both Algorithms 2(FP) and 3(FN) use
a test set consisting of s BTTs and can detect all non-
trivial faults with ∆ < λ. Algorithm 2(FP) ensures that the
probability of false-positive is at most δ and Algorithm 3(FN)
ensures that the false-negative probability is at most δ. The
number of circuit outputs required by the former algorithm is
at most 1 + ln(1/δ)/2(0.5 − λ)2 and the same by the latter
algorithm is at most s(1 + ln(1/δ)/2(0.5− λ)2).

VI. DIAGNOSIS OF SINGLE-FAULT CIRCUITS

In this section we discuss our solution for fault diagnosis —
not only we are interested in finding out if a given quantum
circuit has a (single gate) fault, but we want to identify
the particular fault as well. As in Section V, our diagnostic
strategy uses the BTT-table and the fault-error table generated
by the test generation stage (Algorithm 1).

Our algorithm is described in Algorithm 4. It first generates
some candidate faults (denoted by CAND), and then verifies
if each candidate can be the possible fault by comparing the
obtained distribution with the possible distribution. Described
in lines 8–17 and similar to the algorithm for detection,
CAND is obtained by first removing all i for which BTT (i)
has non-zero § outcomes. The faults left behind are further
filtered using KL-Divergence. For any i for which τi[§] = 0,
we accept i as a candidate if the obtained distribution τ is
closer to µi,i than µi,0. We wanted to ensure two properties
of CAND — (i) if C = Cj , then j should be in CAND (no
false negative), and (ii) if C = Cj , the CAND should not
contain any i 6= j (no false positives).

However, the above steps are insufficient in removing false
positives, so we propose two additional heuristics to reduce
false positives and also ensure no false negative. In those
two heuristics (lines 18–24 and lines 25–35, respectively),
the set of candidates are further pruned based on additional
properties of the entire list of distributions [τ1, τ2, . . . τs] using
two additional tables Map1 and Map2, created by subroutines
CreateMap1 and CreateMap2, respectively. For every
faulty circuit Cj , i ∈ Map1[j] if BTT (i), when applied
on Cj , would never output §. On the other hand, Map2[j]
contains those BTTs whose majority outcome would be 0.

Similar to the earlier algorithm for fault detection, this
algorithm also choose the number of samples carefully
to ensure bounded error during diagnosis. The subroutine
NumSampleDiag() essentially sets ηi to be max(ηai , η

b
i , η

c
i )

(see Algorithm 4) where these have the following properties.
• ηai = η(i, δ) is defined in Lemma 11,
• ηbi is a large enough integer such that if for any j,
µi,j [§] > 0, then ηbi samples from µi,j will contain non-
zero § with probability at least 1− δ (see Lemma 13),

• ηci is a large enough integer such that if any µi,j [0] > 0.5,
then ηci samples from µi,j will have 0 as the majority
sample with probability at least 1− δ (see Lemma 14).

Lemma 13. Suppose for some i and j, µi,j(§) 6= 0. Let τi
denote a distribution obtained from ηbi,j independently chosen
samples from µi,j . Then Prτi [τi(§) = 0] ≤ δ. Here, ηbi,j =

lg(δ)
lg(1−µi,j(§)) if µi,j(§) 6= 1 and 1 otherwise.

The proof of the above lemma is straight-forward and
omitted. We set ηbi = maxj η

b
i,j .

Lemma 14. Suppose for some i and j, µi,j(0) > 1/2. Let τi
denote a distribution obtained from ηci,j independently chosen
samples from µi,j where ηci,j = 2µi,j(0) ln(1/δ)

(µi,j(0)−1/2)2 . Then
Prτi [τi(0) ≤ 1/2] ≤ δ.

This lemma can be proved using Chernoff bound 3. We set
ηci = maxj η

c
i,j .

Since ηi is set to max{ηai , ηbi , ηci }, we can say that the
sample size for BTT (i) ensures that Lemma 11, 13 and 14
are satisfied. We denote ηmax = maxi ηi and ηavg =

∑
i ηi/s.

It is clear that Algorithm 4 always uses
∑
i ηi samples. We

prove its correctness next.

Theorem 15. Suppose C = Cj for some j > 0.
(a) Then, SUSP returned by Algorithm 4 contains j with

probability at least 1− 2δ.
(b) Consider any 0 < i 6= j. Then, SUSP returned by

Algorithm 4 does not contain i with probability at least 1− δ
unless µi,j = (p, 1− p, 0) for some p ≤ 1/2.

Furthermore, M-cost of Algorithm 4 is s · ηavg .

Proof of part(a). We will essentially prove three claims;
j ∈ CAND, j 6∈ REJ1 and j 6∈ REJ2, each holding with
high probability.

Since µj,j(§) = 0, therefore, τj(§) = 0 when BTT (j) is
applied. Lemma 11 gives us that Pr[j added to CAND] ≥
1− δ (lines 11–15).

By the property of Map1, for any i ∈Map1[j], τi(§) = 0
since τi is obtained by running BTT (i) on Cj . Therefore, j
will not be added to REJ1 (in line 21).

Finally, we show j 6∈ REJ2 w.h.p. by using a probabilistic
reasoning. For all k ∈ {1, . . . , s}, let Xk denote the following
indicator random variable.

Xk =

{
1, if k ∈Map2[j] & τk(0) < 1/2
0, otherwise

}
First, note that

∑
kXk is precisely the value of count before

line 32. Secondly, Pr[Xk] < δ since (a) if µk,j(0) ≤
1/2, k 6∈ Map2[j], and (b) if µk,j(0) > 1/2, then
Pr[τk(0) ≤ 1/2] < δ (by Lemma 14). Therefore, E[count] =∑
k E[Xk] < sδ. We apply Chernoff bound 4 to upper

bound Pr[j added to REJ2] = Pr[count ≥ sδ(1 + t)] ≤
exp(− t2

2+tsδ).
Case (a) sδ ≤ 1: In this case, t = 2

sδ ln 1
δ and so, 2t > 2+t.

Therefore, exp(− t2

2+tsδ) ≤ exp(− t
2sδ) ≤ δ.

Case (b) sδ > 1: Note that in this case, if t > s, then
(1 + t)sδ > s2δ > s; however, count can never be more than
s. Therefore, we can take t ≤ s and so, 2+ t < 2s. Therefore,
exp(− t2

2+tsδ) ≤ exp(− t2

2ssδ) = exp(− t2δ2 ) which is at most

δ since t =
√

2
δ ln 1

δ in this case.

3We use the following application of Chernoff bound. Let X denote the
number of heads when n coins are tossed, each with probability of head equal
to p > 1/2. Then, Pr[X > n/2] ≥ 1− exp(− n

2p
(p− 1

2
)2).

4We are using the following version: For any σ > 0, Pr[
∑
Xk ≥ (1 +

σ)E] ≤ exp(− σ2

2+σ
E) where E is E[Xk] or any upper bound on it [26].
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Input: T : BTT table
∆: Fault error table
s: Number of gates
C: Circuit to be checked for fault
δ: Max. probability of error
λ: Threshold of fault error

Output: Faulty or Fault-free

Algorithm 4 Fault Diagnosis

1: CleanupBTTTable(λ)
2: For i = 1 to s, ηi ← NumSampleDiag(δ, i)
3: For j = 1 to s, Map1[j]← CreateMap1(δ, j)
4: For j = 1 to s, Map2[j]← CreateMap2(δ, j)
5: Initialise CAND ← {}, REJ1← {}, REJ2← {}
6: if sδ ≤ 1, t←

√
2
δ ln 1

δ else t← 2
sδ ln 1

δ

7: for BTT i = 1 to s do
8: Run BTT (i) on C ηi times
9: τi ← distribution of outcomes

10: if τi(§) = 0 then
11: d0← DKL(τi‖µi,0)
12: d1← DKL(τi‖µi,i)
13: if d0 > d1 then
14: Add i to CAND
15: end if
16: end if
17: end for
18: for j in CAND do
19: for i in Map1[j] do
20: if τi[§] 6= 0 then
21: Add j to REJ1; break;
22: end if
23: end for
24: end for
25: for j in CAND do
26: count← 0
27: for k in Map2[j] do
28: if τk[0] < 1/2 then
29: count← count+ 1
30: end if
31: end for
32: if count ≥ sδ(1 + t) then
33: Add j to REJ2
34: end if
35: end for
36: SUSP ← CAND \REJ2 \REJ1
37: return SUSP

function NUMSAMPLEDIAG(δ, i)
d0← µi,0
d1← µi,i
if d0 = (1, 0, 0) or (0, 1, 0) then

ηai ← 1
else

ηai ← η(i, δ) (Lemma 11)
end if
ηai ← 1, ηci ← 1
for BTT j = 1 to s s.t. do

if 0 < µi,j(§) < 1 then
ηbi ← max

{
ηbi ,

log(δ)
log(1−µi,j(§))

}
end if
if µi,j(0) > 1/2 then

ηci ← max
{
ηci ,

2µi,j(0) ln(1/δ)
(µi,j(0)−1/2)2

}
end if

end for
return max{ηai , ηbi , ηci }

end function

function CREATEMAP1(δ, j)
Initialise Map1[j] = {}
for faulty circuit i = 1 . . . s do

if µi,j(§) = 0 then
Add i to Map1[j]

end if
end for
return Map1[j]

end function

function CREATEMAP2(δ, j)
Initialise Map2[j] = {}
for faulty circuit k = 1 . . . s do

if µk,j(0) > 1/2 then
Add k to Map2[j]

end if
end for
return Map2[j]

end function
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Therefore, j is added to REJ2 with probability at most δ.
Combining all the scenarios, j is not in SUSP either if j is
not added to CAND or j is also added to REJ2 – which
happens with probability at most 2δ.

We need the following results on the sample sizes to prove
that false positives happen with low probability.

Lemma 16. Let τi be a distribution obtained from ηi runs
of BTT (i) on a circuit Cj for some i 6= j. If µi,j [§] = 0,
µi,0[0] < 1 and µi,j [0] > 1/2, then with probability at least
1− δ, DKL(τ‖µi,0) ≤ DKL(τ‖µi,i) holds.

Proof. Let a = τ [0] and p = µi,0[0] (note that 1/2 < p < 1).
Therefore, µi,0 = (p, 1− p, 0) and µi,i = (1− p, p, 0).

DKL(τ‖µi,0)−DKL(τ‖µi,i)

= a lg
a

p
+ (1− a) lg

1− a
1− p − a lg

a

1− p − (1− a) lg
1− a
p

= a lg
1− p
p

+ (1− a) lg
p

1− p
= (1− 2a) lg

p

1− p
> 0 iff a < 1/2

Now we are ready to give a bound on the false positive.
Please observe that, unlike the bounds given until now, this
bound does not hold for all scenarios. In fact, if µi,j is similar
to µi,i (i.e., both have the form (p, 1−0, 0) for some p < 1/2),
then we allow i to be erroneously included in CAND. We
do this to keep our tests simple and hope that the additional
heuristics of Map1 and Map2 will ensure that such i is
eliminated from SUSP . We will demonstrate the effectiveness
of these heuristics with the help of our experiment results.

Proof of Theorem 15(b). Let τi be the distribution obtained
from µi,j . We will separately analyse two possible scenarios.

First possibility is that µi,j(§) > 0. Then, τi(§) 6= 0 with
probability at least 1 − δ using Lemma 13. Therefore, with
high probability, i will not be added to CAND (lines 11–15).

The other possibility is that µi,j = (p, 1 − p, 0) for some
p > 1/2 leading to τi = (r, 1 − r, 0) for some r. Now,
let µi,0 = (q, 1 − q, 0) for some q > 1/2. (a) If q = 1,
then µi,i = (0, 1, 0). By Lemma 14, Pr[r > 1/2] ≥ 1 − δ.
Therefore, with high probability of 1 − δ, τi 6= (0, 1, 0) and
in that case, i will not be added to CAND in lines 11–15
since DKL(τi‖µi,i) is not even defined for such µi,i and τi.
(b) On the other hand, if q < 1, then d0 and d1 in lines 11–
15 are well-defined. But DKL(τ‖µi,0) ≤ DKL(τ‖µi,i) with
high probability (Lemma 16) and in that case, i is not added
to CAND in those lines.

VII. PERFORMANCE EVALUATION

The primary objective of our work was to derive theoret-
ical upper bounds for detecting and diagnosing every non-
redundant fault with high probability.

However, we also evaluated our approach for practical
scenarios by running simulations to compare our algorithm

|q0〉

H3

•
H2 X2

•
X2

H3|q1〉 • H ⊕ H

|q2〉 ⊕

Fig. 5. Benchmark circuit simpleGrover on 3 qubits with 9 gates

with the state-of-the-art algorithm by Paler et al. [15]. We used
the SMGF model for faults in our experiments, i.e., the faulty
gate is assumed to be missing. Due to the obvious difficulty
of not having access to an affordable quantum computer, we
simulated a run of BTT , say BTT (i) on circuit Cj , by
sampling from the distribution µi,j in the BTT table. For
every circuit and every fault, we ran fault detection algorithms
10,000 times and report their mean. For our experiments, we
fixed the probability of error (δ) at 1%, same as that in the
work we are comparing with. We set λ = 0.499995, so every
fault was within the threshold for detection. All our programs,
written in python, as well as fault-error and BTT tables for
our benchmark circuits are available on our website 5.

The benchmark circuits that we used are 3qubitcnot (il-
lustrated in Figure 4), simpleGrover3 (implementation of
Grover’s algorithm on 3 qubits and illustrated in Figure 5)
and qecc9 (part of QuIDDPro software package [27]). We
could not obtain exactly same circuits for qftadd5 and qftadd12
that were used in the compared work, so we include results
of our experiments but leave out corresponding results from
the previous work. In Table III we have listed their relevant
properties along with a histogram of how many faulty gates
have error (∆(G,Gf )) in different intervals. The gates with
∆ ≈ 0 are very easy to detect, if faulty. On the other hand, the
gates with ∆ ≈ 0.5 would be impossible to detect when faulty
and such faults are called as redundant faults. However, it can
be observed that none of the single missing gate faults in our
benchmark circuits were redundant and moreover, most gates
in 3qubitcnot, simpleGrover3 and qecc9 appear to be easily
detectable. In contrast, qftadd5 and qftadd12 contains several
gates with high ∆; so, it is expected that those circuits will
incur a high M-cost for detection and diagnosis.

A. Results for detection

For comparison, we choose the BTT gen algorithm along
with the LRM technique (denoted by BTT+LRM) proposed by
Paler et al. [15] which is currently the best fault detection algo-
rithm (it substantially improves upon their earlier work [14]).
Even though they were only concerned with false-negatives,
we report M-costs for both types of errors.

We chose to implement “Algorithm FN” since the BTT gen
algorithm was evaluated only for faulty circuits. Since most
faults in the benchmark circuits have low ∆, their corre-
sponding η is quite small. We observed that for such circuits,
ηmax ≈ sηavg (also reported in Table III), so Algorithm FN
should be able to detect most of their faults using few samples.

Detailed performance of our algorithm for all 7 types of
faults (including “fault-free”) for the 6 gates of the 3qubitcnot

5https://www.iiitd.edu.in/∼dbera/smgf/
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TABLE III
BENCHMARK CIRCUITS

Benchmark
circuit

qubits gates faults with
∆ = 0

faults with 0 <
∆ ≤ 0.05

faults with 0.05 <
∆ ≤ 0.46

faults with 0.46 <
∆ < 0.5

faults with ∆ =
0.5 (redundant)

max ∆

3qubitcnot 3 6 4 0 2 0 0 0.40000
simple-
Grover3

3 9 9 0 0 0 0 0.00000

qecc9 9 60 25 35 0 0 0 0.00006
qftadd5 (*) 5 15 5 0 10 0 0 0.45099
qftadd12 (*) 12 78 12 0 26 4 0 0.49967

TABLE IV
COMPARISON OF FAULT DETECTION ALGORITHM (ALGORITHM FN) ON BENCHMARK CIRCUITS.

Benchmark
circuit

Our BTT + LRM [15] Additional statistics (our)
False -ve True +ve M-cost

(median)
False -ve True +ve

M-cost
False +ve True -ve

M-cost
True +ve M-
cost (q3)

True +ve M-
cost (max)

ηmax ηavg

3qubitcnot
0 fault
(99%
times)

2.3 1 fault 50 1% 273 18.1 156.4 237 46
simple-Grover3 1.2 0 fault 40 0% 9 1.7 2 1 1
qecc9 1.3 8 faults 600 0.3% 60 1.9 12 1 1
qftadd5 (*) 4.8 n.a. 3.8% 1659 16.1 178.1 954 111
qftadd12 (*) 261.8 n.a. 27.8% 3.8× 107 5381 3.1× 107 2.1× 107 4.8× 105

TABLE V
FAULT DETECTION OF 3QUBITCNOT CIRCUIT

Type of fault Fault-free Faulty
C0 C1 C2 C3 C4 C5 C6

∆ - 0 0 0 0.25 0.4 0
Error (%) 1.1 0 0 0 0 0.3 0
M-cost (if correct
output)

192 1 1.3 1.5 17.9 126.2 3.2

circuit are presented in Table V. Mean M-cost of the runs only
when the output is correct is reported. Not only all faults are
detectable but most of the faults are perfectly detectable and
they incur a small M-cost (within 20). Also, as expected M-
cost increases significantly for faults with large error (e.g., for
C5). This is in contrast to the fact that the earlier technique
BTT gen with LRM used 50 samples but could not detect
one faulty gate. Though the specific fault was not reported,
we suspect it was G5 (of type Rz(π/16)) and the reason is
that 50 samples are too few for C5.

In Table IV, we give a summary of how our algorithm
performs vis-a-vis the BTT gen with LRM technique. M-
cost is reported only for those cases in which the output is
correct. As expected, false negatives are practically absent.
Surprisingly we see that false positives also happen rarely.
M-cost for true negative is bound to be high, since all BTTs
have to be tried before correctly claiming a circuit to be fault-
free. Median M-costs (or even 3rd quartile values) for the true
positive scenarios are also lower than the earlier results.

For the simpleGrover circuit, we could correctly detect all
single-gate faults using merely 2 samples, compared to the
40 samples that were used earlier. All faults of the qecc9
circuit have low ∆ and so could be detected using only 12
samples. Note that the earlier technique was not able to detect
8 out of 60 faults even with 600 samples. The comparatively
large values for the qftadd5 and qftadd12 circuits should be
attributed to many of their gates with ∆ between 0.4 and 0.5.

TABLE VI
HISTOGRAM OF (MEDIAN) SUSPECT SET SIZES

Benchmark
circuit

faults with |SUSP | = k Additional stats.
Our BTT + LRM [15]

k = 1 k = 2 k = 1 k = 2 ηavg ηmax

3qubitcnot 6 0 1 5 1267 5888
simple-
Grover3

8 1 5 4 477 4004

qecc9 54 6 n.a. 89 1297
qftadd5 (*) 15 0 n.a. 9898 20466

B. Results for diagnosis

In Table VI, we experimentally compare our algorithm
with the state-of-the-art technique proposed by Paler et al.
[15] (denoted by BTT+LRM) for the benchmark circuits
3qubitcnot and simpleGrover3 under SMGF. We also include
results for qecc9 and qftadd5 even though they were not
covered in the existing work (Paler et al. considered a different
implementation of qftadd5 which is not publicly available). We
did not experiment with qftadd12 because many of its gates
have ∆ > 0.49 which will lead to astronomical samples sizes.

As per Theorem 15, the correct fault for any faulty circuit
is included in the list of suspected faults SUSP (with 99%
probability) returned by our algorithm. The same has also been
reported for BTT+LRM. Therefore, we compare the size of
SUSP , which is better if smaller and best if |SUSP | = 1. It
can be seen that both for 3qubitcnot and simpleGrover3, the
suspect set is considerably smaller for our algorithm. Even
for circuits like qftadd5 which contains several gates with ∆
close to 0.5, our algorithm manages to uniquely identify all the
faults. Such a high rate of diagnosis comes at the cost of more
measurements. We have included the average and maximum ηi
used for diagnosis in Table VI and it can be readily seen that
there is a wide variation in the various ηi for different gates.
This explains the high M-cost of nearly 150,000 for qftadd5
and gives an indication that fewer samples (say, of the order
of hundreds) may be insufficient for diagnosing this circuit.
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VIII. CONCLUSION

In this paper we present a clear outline of how one should
detect and diagnose single-gate faults in quantum circuits
using tomograms. We focus on generating a test set that covers
almost all faults of any quantum circuit and give efficient ran-
domised testing and diagnosis algorithms using the test sets.
We experimentally show that for single missing-gate faults in
some benchmark circuits our approach performs significantly
better than the currently known best technique. Our main
contribution here is to demonstrate that while studying faults
in quantum circuits, one should consider the properties of
quantum circuits for properly choosing input states as well as
measurement strategies. Since an output of a quantum circuit is
probabilistic in nature, tools from statistical hypothesis testing
may further improve efficiency of testing.

We believe that our work is an initial response to the
exciting challenges brought forth by faults in quantum circuits.
It should be noted that our results are applicable to circuits
realised by a network of basic quantum gates and may not
extend to other physical realisations of the quantum computer.
Even for the quantum circuit model, there may be additional
challenges arising from the implementation technology; we
hope that our work can be suitably extended in such cases.
One specific direction that we did not pursue was optimising
the size of the test set; in our case this is equal to the number of
gates in a circuit but this could be reduced, e.g., by finding tests
covering multiple faults. Like that of the reversible circuits, we
suspect that the problem of finding the minimum sized test set
is a computationally difficult problem.

Quantum circuits with noisy gates may require different
techniques (e.g., quantum error correcting codes) and were left
out from this paper. An important question of quantum circuits
is its debugging with respect to its intended function; while
not directly applicable, some of the ideas used in diagnosis
of faults may be useful in debugging as well. We conclude
with the conjecture that the problem of finding the optimal
BTT for any gate is NP-hard, possibly by a reduction from
the well-known NP-hard quadratic optimisation problem [28].
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