
An Intent-Based Automation Framework for Securing Dynamic
Consumer IoT Infrastructures

Vasudevan Nagendra
Stony Brook University

vnagendra@cs.stonybrook.edu

Arani Bhattacharya
KTH Royal Institute of Technology

aranib@kth.se

Vinod Yegneswaran
SRI International
vinod@csl.sri.com

Amir Rahmati
Stony Brook University
amir@cs.stonybrook.edu

Samir R Das
Stony Brook University

samir@cs.stonybrook.edu

ABSTRACT
Consumer IoT networks are characterized by heterogeneous de-
vices with diverse functionality and programming interfaces. This
lack of homogeneity makes the integration and secure management
of IoT infrastructures a daunting task for users and administrators.
In this paper, we introduce VISCR, a Vendor-Independent policy
Specification and Conflict Resolution engine that enables intent-
based conflict-free policy specification and enforcement in IoT envi-
ronments. VISCR converts the topology of the IoT infrastructure
into a tree-based abstraction and translates existing policies from
heterogeneous vendor-specific programming languages, such as
Groovy-based SmartThings, OpenHAB, IFTTT-based templates,
and MUD-based profiles, into a vendor-independent graph-based
specification. These are then used to automatically detect rogue
policies, policy conflicts, and automation bugs. We evaluated VISCR
using a dataset of 907 IoT apps, programmed using heterogeneous
automation specifications, in a simulated smart-building IoT infras-
tructure. In our experiments, among 907 IoT apps, VISCR exposed
342 of IoT apps as exhibiting one or more violations, while also
running 14.2x faster than the state-of-the-art tool (Soteria). VISCR
detected 100% of violations reported by Soteria while also detecting
new types of violations in 266 additional apps.

CCS CONCEPTS
• Security and privacy → Access control; Usability in security
and privacy; Security requirements.
KEYWORDS
Intent-based policy and automation framework, Consumer IoT se-
curity, Conflict detection and resolution.

ACM Reference Format:
Vasudevan Nagendra, Arani Bhattacharya, Vinod Yegneswaran, Amir Rah-
mati, and Samir R Das. 2020. An Intent-Based Automation Framework for
Securing Dynamic Consumer IoT Infrastructures. In Proceedings of The Web
Conference 2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3366423.3380234

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380234

1 INTRODUCTION
The adoption of the Internet of Things (IoT) has led to an explosion
in the number of devices integrated into consumer IoT infrastruc-
tures (e.g., “smart homes”, “smart campus”, and “smart cities”) [1, 2].
The heterogeneity of these infrastructures poses two major chal-
lenges in developing and enforcing policies across them:
(1) Coherent Policy Expression: Today, IoT device vendors support

web and mobile-based apps, wide range of IoT automation frame-
works, and specification languages [3–7] that allow users and
administrators to program their IoT infrastructures. However,
directly capturing the high-level automation (or policy) intent
of IoT administrators, using these vendor-specific IoT apps, is
a challenging task, which requires administrators of the IoT in-
frastructure to manually decompose their high-level intents into
device-specific rules prior to installation onto IoT infrastructures.

(2) Conflict-free Enforcement: Consumer IoT infrastructures are pro-
grammed by multiple administrators having complex roles and
varying levels of skill, which may include novice smart-home
users (e.g., parents, kids), smart-campus or smart-city admin-
istrators (e.g., HVAC admins, fire-safety admins). Configuring
conflict-free automation in such multi-administrative environ-
ments is a tedious process.

Recent studies independently underscore the need for new access
control and policy frameworks to address the security goals of IoT
ecosystem [8–10]. These solutions are designed to identify viola-
tions in IoT ecosystems with homogeneous programming specifica-
tions. However, they do not apply to contemporary consumer IoT
deployments that commonly involve devices using diverse vendor-
specific APIs and heterogeneous programming specifications. Fur-
thermore, existing tools either rely on model checking for static
analysis of IoT automation programs to detect the conflicts [9],
or require IoT automation code to be instrumented for detecting
run-time violations [10]. Existing tools and techniques also leave a
wide spectrum of automation bugs and conflicts undetected. For
example, gap in automation due to lack of expertise among admin-
istrators, rogue policies on infrastructures that the user does not
control, violations that might arise due to loops among automation
rules, and other potential run-time violations are some of the key
issues left unaddressed by the existing automation frameworks (§5).

In this paper, we introduce “VISCR”, a new intent-based IoT pol-
icy automation framework1 that allows administrators of an IoT

1Intent-based policy frameworks provides administrators with the ability to directly
capture their intention by decoupling “what” policies are to be enforced from “how”
to implement and enforce them.

https://doi.org/10.1145/3366423.3380234
https://doi.org/10.1145/3366423.3380234

Eco-
system

Goal Policy Intents of the IoT Administrator

P1 Campus Safety,
Privacy

Allow video feeds from camera to be sent to fire-safety
admins in event of fire alarm.

P2 Campus Security Cameras for monitoring is turned OFF between 9PM –
7AM, and turned ON only when motion is detected.

P3 Home Safety Between 10PM – 6AM open main door to kids & guests
only with authorized user’s approval (e.g., parents).

P4 Home Safety In case of a fire event, warn users, and then open the
windows and doors to allow residents to exit safely.

Table 1: Policy conflict examples in consumer IoT infrastructures.

infrastructure to directly and succinctly capture their dynamic au-
tomation use-cases and policy intents in a vendor-independent
manner. For effectively accommodating the automation rules and
policies that are already specified in the existing IoT infrastructure
using heterogeneous programming specification languages2, VISCR
translates these IoT automation programs into vendor-independent
graph-based specifications (§ 4.1). VISCR uses these graphs to detect
bugs and conflicts across policies that could otherwise go unde-
tected using existing model checking-based tools [9, 10]. These
include: (a) static compile-time conflicts, (b) gap in the automation,
(c) conflicts due to chaining and loops among automation rules, (d)
access violations, (e) potential run-time violations, and (f) rogue
policies. VISCR supports automatic conflict resolution using the
PRECEDENCE operator. Any unresolved conflicts are forwarded to
appropriate IoT users or administrators for manual resolution. The
policy reconciliation engine decomposes the composed conflict-free
policy graph into a set of device-specific rules for enforcement onto
actual devices (e.g., IoT devices, IoT Gateways) as IoT apps and ACL
rules (§5.2.3).

We evaluate VISCR on a simulated smart-building IoT infras-
tructure with 907 apps. VISCR detected a wide range of bugs i.e.,
≈37.7% of IoT apps are reported for one or more conflicts and bugs
compared to ≈8.4% of static compile-time conflicts detected with
existing model checking-based tool [9] while incurring less than
3.8% false positives. We discuss the resultant conflicts and bugs
detected by VISCR and their categories in §6.
In summary, our paper makes the following key contributions:
• Wedesign VISCR, a vendor-independent graph-based policy spec-
ificationmechanism that translates automation rules and policies
specified using heterogeneous programming specification lan-
guages into vendor-independent graph-based policies. (§4).
• We implement efficidnt graph composition techniques to detects
bugs and conflicts that arise among the policies and resolve them
using PRECEDENCE operation for conflict-free enforcement (§5).
• We evaluate VISCR using 907 IoT apps (i.e., both vetted and unvet-
ted) in a simulated smart building infrastructure with real world
automation use cases reported by IoT users and administrators
and compare with existing techniques (§6).

2 CHALLENGES AND RESEARCH GOALS
A wide variety of automation frameworks and specification lan-
guages are supported by IoT device vendors for automating IoT
infrastructures [3–7]. Such heterogeneity makes programming the
IoT infrastructure a challenging task. In addition, the presence of

2For example, Groovy-based programs for smartthings [5], OpenHAB-based rules [3],
MUD-profiles [6] and, IFTTT-based applets [7].

multiple administrators3 in IoT infrastructures with different roles
and responsibilities further complicates the situation. Hence, the
heterogeneity, and lack of a unified policy-specification in multi-
administrative IoT infrastructures forces administrators to indepen-
dently develop automation policies and manually detect conflicts
and violations.

2.1 Intuitive Policy Specification
IoT infrastructures are typically managed by multiple administra-
tors, each of them responsible for the management of a specific
group of devices. For effectively capturing policy intents from mul-
tiple administrators, a policy framework should support following
capabilities: (i) Ability to logically group devices in accordance
with the policy requirements of each of the administrator. For ex-
ample, the IoT administrators handling cameras of BLDG1 and
BLDG2 of the campus network should have abstractions that logi-
cally group the devices belonging to those locations; (ii) Provide
isolation among administrators while exposing only the necessary
abstractions required for policy specification avoiding rogue policies
from being specified. For example, a fire-safety administrator should
not be exposed to other IoT infrastructure details (e.g., cameras,
HVACs etc.) unless cross-device policy specification is required.

Currently, it is challenging to provide logical isolation across
different policy administrators and the devices they administer,
which motivates the need for fine-grained abstractions and logical
grouping of IoT devices (Figure 3). Also, the lack of expertise in pro-
gramming using heterogeneous automation specification languages
makes the IoT infrastructures prone to errors [11–15].

2.2 Conflict Detection & Resolution
Policy intents of IoT administrators are implemented using discrete
automation rules configured onto each device using the mobile
or web-based user interfaces, and automation specification lan-
guages [3, 5, 6, 16]. The existing consumer IoT ecosystem lacks
means to effectively detect the conflicts, bugs and violations that
arise among the policies that are captured independently by each
of the administrators using heterogeneous specification languages
and reconcile them onto each of the IoT devices.

Recent studies have demonstrated that major vulnerabilities in
the IoT infrastructure are commonly due to simple human errors
and lack of expertise in policy configuration [11, 12, 17, 18]. As
highlighted in Table 4, there are range of automation bugs, policy
conflicts and violations (e.g., gap in automation, potential run-time
conflicts, and code sanity bugs) that could go undetected with
existing conflict detection techniques [9, 10, 19]. Let us consider
following policy conflicts:
Policy Conflict 1: Consider for example two policies P3 and P4
(Table 1) with conflicting actions in opening main door. In case of
a fire alarm after 10 P.M., (both policies P3 and P4 are activated)
the current IoT automation keeps the door locked due to policy P3,
preventing users from leaving and fire-safety officers from entering.
Policy Conflict 2: Similarly, policies P1 and P2 results in run-time
violation. When video feed is shared with fire-safety staff, the feed
is interrupted by the camera’s idle-time event i.e., turns OFF the

3For example, the smart home automation rules are specified by the members of the
family (e.g., parents, kids, guests), while smart campus and enterprise IoT infrastruc-
tures are managed by different types of IoT administrators such as HVAC, fire-safety,
utilities & energy, and infrastructure (or building) administrators.

2

var
triggerEvent;
if
(triggerEvent
) { ….
} else { …..
}

var
triggerEvent;
if
(triggerEvent
) { ….
} else { …..
}

rule: …
when Channel
”…..”
triggered
START
then
end

IoT Apps

Policy Input

.....

VI Conflict
Detection &

Resolution
Engine (VICE)

Infrastructure
Abstraction

Engine

Intuitive
Graph-based

Policy
Specification

Tree-based
Abstractions,

Dynamic
States,

Topology

rule: …
when Channel
”…..”
triggered
START
then
end

IoT Apps, Policy
Input, Device

Configurations

.....

Reconciliation
to device-

specific rules

4

5
Code Sanity

& Policy

Graph
Generation

3

21

Figure 1: VISCR: Highlevel system architecture.

camera interrupting the feed from being shared, leading to safety
violations. Proactively detecting and resolving the conflicts 1 &
2 discussed above in compile-time is a challenging task as these
policies depends on asynchronous events (e.g., inactivity timer) and
environmental conditions (i.e., time and motion sensing).

3 VISCR: SYSTEM OVERVIEW
We describe the components of VISCR’s policy specification and en-
forcement framework. As shown in Figure 1, VISCR performs sanity
checks on IoT automation programs that are captured using hetero-
geneous specification languages [3, 5–7] and then translates them
into vendor-independent graph-based specifications (1). VISCR
maintains mapping between the IoT programs, associated device
configurations, and graph-based policies as policy mappings, which
are then used in policy enforcement phase i.e., for reconciling com-
posed policy graph to device-specific rules (§5.2.3). For translation
of vendor-specific automation rules to vendor-independent graph-
based policies, we have built necessary lexing and parsing grammar
(.g4), and mapping (.map) files specific to each of the automation
specification language with ANTLR (§4.1).

To enhance the usability of our policy framework, VISCR also sup-
ports a drag-and-drop interface for graph-based policy specification
(4) and input policy entities that follow tree-based infrastructure
abstractions (§4.2.2). The tree-based abstractions that are required
for each IoT administrator to specify policies (3) are automatically
constructed using data sources present within the IoT infrastructure
and cloud interfaces (§4.2.1).

The vendor-independent graph-based policies (i.e., outcome of
modules 1 & 4) are inputs to the VICE module for detecting the
conflicts, violations and bugs. VICE initially detects rogue policies
(2) that are configured by policy administrators on any specific
portion of the IoT infrastructure they are not authorized to spec-
ify automation rules (Section 4.2.2). In the next step, the policy
composition engine uses graph-based composition algorithms and
precedence mechanisms for automatically detecting the conflicts
and resolving them respectively. Unresolved conflicts and bugs are
reported to the administrators of IoT infrastructure for manual
resolution (2).

The composed policy graphs are further analyzed for security
bugs and violations (§5.2): (i) gap in the automation that could make
infrastructure vulnerable, (ii) loops that exist among automation
rules, (iii) access violations, and (iv) potential conflicts that could
arise in run-time. Finally, the composed conflict-free policy graphs
and policy mappings are used to reconcile the policies into device-
specific rules for enforcing (5).

4 VENDOR-INDEPENDENT SPECIFICATION
Realizing coherent automation in existing IoT infrastructures that
uses heterogeneous specification languages is a challenging task. It
requires administrators to analyze each of the IoT Apps manually

VI Graph
Generator

Groovy, IFTTT, MUD, OpenHAB-
based Automation rules, Device-

specific Configurations

rule: …
when Channel
”…..” triggered
START
then
end

var
triggerEvent;
if
(triggerEvent)
{ ….
} else { …..}

OpenHAB
Rules

IFTTT-based
Rules

ANTLR Parser
Generator

Tree-based
Abstractions

Grammar files (.g4):
OpenHAB.g4,
Groovy.g4,...

Map Files (.map):
Vendor-specific

LISP à VI

1

ALRs

Figure 2: Functional block diagram of graph generation module.
architecture for generating vendor-independent graph-based speci-
fications from vendor-specific automation rules.

for detecting the conflicts and bugs for manually resolving them,
which is a tedious process and could be prone to error. Hence,
we propose a vendor-independent specification engine (VISCR)
that serves following key purpose: (i) translates IoT automation
programs and policies specified using Groovy, IFTTT, MUD, and
OpenHAB-based programs into a vendor-independent graph-based
specification, and (ii) performs sanity checks on IoT apps.

4.1 Vendor-Independent Model
As illustrated in Figure 1, Code sanity and Graph generator module
of VISCR engine consumes vendor-specific IoT Apps (i.e., IFTTT-
based Applets, Groovy-based SmartThings, OpenHAB programs)
and translate them into vendor-independent trigger and action-
based policies (as shown in Figure 5). Similarly, the MUD profiles4

and translated into vendor-independent graph-based ACL policies
(as shown in Figure 4). This approach allows each of the functional
component of VISCR i.e., composition engine to operate seamlessly
on vendor-independent (VI) model. As shown in Figure 2, VISCR
generates the vendor-independent (VI) graph-based policies using
following key functional modules:
• ANTLR Parser Generator: As a first step, we develop the lexer
and parser grammar (.g4) files required to translate the vendor-
specific IoT apps to an abstracted intermediate representation
(i.e., Abstracted LISP Representation (ALR) and Abstracted Tree
Representation (ATR) formats) with ANTLR module. ANTLR
parser generator uses the Abstracted LISP representations (ALR)
of the IoT Apps for performing the code sanity analysis. Note,
both the ALR and the ATR representations of IoT apps are not
exposed to end users, only the outcome of VI graph generator
(1) will be exposed to users and composition engine.
• VI Graph Generator: In the next step, automation rules repre-
sented in the Abstracted LISP syntax representation are con-
sumed by the VI Graph-generator module to translate it to
vendor-independent graph-based policies (as shown in Figures
5 & 4). We built (.map) file, which is used for maintain nec-
essary mappings between different vendor-specific automa-
tion/policy attributes and vendor-independent graph attributes.
These vendor-independent attributes (or labels) are used in the
construction of final vendor-independent graph-based repre-
sentation. The vendor-independent graph-based specifications
outcome of VISCR (1) is captured using networkx python li-
brary for maintaining the policy graphs, required for composing
the policy graphs to detect the conflicts (discussed in Section 5).

4.2 Abstractions & Graph-based Specification
As discussed in Section 4.1, VISCR supports mechanism to translate
the vendor-specific IoT Apps into vendor-independent graph-based
specification. In addition, VISCR also supports simple drag and
4Currently MUD-profiles are limited to support ACL-based traffic filtering rules. It
does not support dynamic trigger and action-based policies yet.

3

�����
�����

�07�
����0��

�07��12���.�0
��������

�07�
����0��

	� �- 	��

�07�
	.�

�07�
	.�

(a) Nest device’s firmware version
<17.01 specific to location & type.

�	�	
��*��
���

�*���
�	�

�*���
�1��

�*����*��

�*��
�	�

� �� �� ��

�*��
��1�*��

� � � �

(b) Capability-specific abstrac-
tion for nest & belkin devices.

����	�0��
������0���

���10�
��3

���10�

��1

���10�����

����
��3

� �

����
������

(c) Vendor-specific authentica-
tion fails in last 30mins.

T1: 9AM	
 – 6PM	

Temporal-
Abstraction	

T2: 6PM
– 9PM	

T3: 9PM
– 7AM	

T4: 7AM
– 11AM	

Normal	

Security_States_
Abstraction	

Compr
omised	

Quara
ntine	

Monitor
ing	

(d) Temporal and security state
abstractions Trees.

Figure 3: Automatically constructed tree-based abstractions for the smart campus IoT infrastructure: (a) captures devices as leaf nodes and
abstraction, (b) captures device capabilities and property values as leaf nodes, (c) captures the dynamic security states (e.g., authentication)
specific to IoT devices, (d) temporal and security state abstractions of IoT infrastructure.

drop-based user interface that allows administrators to directly and
intuitively capture their policies in a vendor-agnostic manner using
nodes of infrastructure abstraction trees, as discussed below.

4.2.1 Tree-based Abstractions. The Infrastructure Abstraction En-
gine automatically builds necessary abstraction trees required for
graph-based policy specification. The abstraction engine contin-
uously churns data from local IoT infrastructure and cloud data
sources using device and vendor-specific APIs for building the ab-
stractions [20, 21]. The data extracted from IoT device’s data sources
as text is translated into data tables by the data-source-driver en-
gines that we designed for each vendor’s data format.

Generation of such abstractions allow administrators to dele-
gate the responsibility of policy specification to sub-administrators.
For example, it is now possible for a global building/campus ad-
ministrator to assign Floor1 and Floor2 responsibilities to different
sub-administrators. Also, VISCR allows abstraction trees to be built
on physical or logical grouping of device (e.g., Figure: 3a & 3b).
The global administrator simply uses abstraction mappings to dele-
gate infrastructure to each of the administrator, illustrated below.
Depending on the assigned abstraction mappings the abstraction
engine generates the abstraction trees. For example, to derive the
abstraction tree shown in Figure 3a (i.e., list of Nest devices of BLDG1
with firmware <17.01 organized as per floor and type of devices), the
abstraction-mapping required is:

abstraction-tree{"Nest-Firmware{<17.01}"} =
location{BLDG1}.floors{*}:
vendor-type{Nest}.device-category{*}:devices{*}

As another example, the abstraction-mapping for capturing the
list of devices and their capabilities with respect to their vendor
and device-types (Figure 3b) is provided below:

abstraction-tree{"Capabilities{*}"} =
vendor-type{*}:vendor-type{*}.device-category{*}:
devices{*}:capabilities{*}

Representing Abstractions: We represent the complete IoT in-
frastructure as set of infrastructure-abstraction trees, specific to each
of the administrators. The root node of the abstraction tree (i.e.,
abstraction tree name) uniquely represents each of the abstraction
tree present in any IoT ecosystem. The leaf nodes represents set
of individual devices. Each intermediate node represents different
infrastructure abstractions such as device-types, device-vendors, lo-
cation, temporal, application details. The infrastructure abstractions
trees implicitly capture the boolean Union operator represented
as sibling nodes in the abstraction tree. Similarly, the boolean AND
operator corresponds to the relationship between the child and
parent nodes of the abstraction tree. For representation, each level

of abstraction is separated with “:” operator, while the constraints
to be imposed on to that level is represented with a “.” operator.

VISCR supports a diverse set of abstractions, which will allow IoT
administrators to capture different types of policies based on their
security status, locations, vendor-type and so on. These include ab-
stractions specific to: (i) security-state, (ii) location, (iii) applications,
and (iv) device- or vendor-specific abstractions.

4.2.2 Graph-based Specification. As discussed in Section 4.1, VISCR
engine translates the vendor-specific IoT Apps into two different
types of policies: (i) trigger- and action-based policies, and (ii) dy-
namic ACL-based policies. In addition to this capability, VISCR also
supports intuitive graph-based specification framework that allows
IoT administrators to directly express their policy intents through
simple drag and drop-based user interface (UI), which uses policy
attributes from tree-based abstractions.
Trigger- & Action-based Policies: Trigger & action-based poli-
cies allows the administrator to capture their policy intents for set
of IoT devices that perform some predefined action in response
to an triggering event. These types of policies can be specified as
complex graph-based policies, where each of the node captures
abstractions, device names, conditions or actions. Our trigger- and
action-based policy graphs have the following format: source IoT
device with associated states, set of conditions, dynamic states, as-
sociated set of events and respective action/s on target IoT devices
(examples in Figure 5).

The source node represents the IoT device on which the event
is received. Rest of the nodes represent conditions and state of the
IoT infrastructure. The sequential and parallel operators >> and | |
are used to specify the sequence of IoT-commands that need to be
executed. The +/− operators are used to add or remove the list of
ACLs that are specific to the current state or condition.
ACL-based Policies: This type of policies either allows or restricts
the communication between devices and internet according to the
dynamic infrastructure states and conditions. Examples of graph-
based access control policies are shown in Figure 4. For the trigger
and action-based policy shown in Figure 5, we implicitly add ACLs
to ALLOW traffic between devices (i.e., Belkin CO device and other
devices on which the action is enforced. In reality, as the communi-
cation happens indirectly between the hub or cloud interface and
the Belkin device, equivalent ACLs are added to the network.

The starting and end nodes represents the source and destination
entities of policies. The edge between the source and target node
captures following properties: (i) set of network functions through
which the traffic should traverse, i.e., network function chain (NFC),
(ii) conditions to be enforced on the traffic depending on the state,
and (iii) actions to be taken on the traffic between the source and
destination entities. With both the ACLs and trigger-action-based

4

/C*<FC<*�3/
�AA�B)

M2<)*�B)N
-<9

��

� �
�AA�B)

M*<A"!C�B)N
�AA�B)

M2<)*�B)N

,!�<D

/C*<FC<*
)*�*<�	�
�DBEFD
B!)<�

�3/ ��

�DIF�<
�C*!*!<)

��F><*
�C*!*!<)�*�*<)� �DC�!*!DC) 2�� ���*!DC)

�F�==!�
*LE<

*!B<

�31

���1

�AA�B)
M�N

���

���

���

Figure 4: ACL-based IoT policy specification.

policies, the states and conditions are represented as nodes along
the path for simplified design in the drag-and-drop-based graph
specification framework. Alternatively, these could be represented
as simple edge properties. The → and −x→ arrowed-lines repre-
sents the action (i.e., ALLOW/DENY) on the traffic.

4.2.3 Graph-based Policies Specification Syntax. An equivalent
specification syntax (Figure 6) is required for capturing each of
these graph-based policies in the backend. For example, in the ACL-
based policy specification syntax, the permissions to communicate
between source and target nodes is specified using action attributes
=> (i.e., ALLOW) and ! => (i.e., DENY) symbols. The sequence of
network functions through which the traffic from a specific source
node should traverse to reach the target node or the sequence of
actions to be taken is specified using the sequential or parallel
operators (e.g., FW (Firewall) >> DPI (Deep packet inspection), FW
| | LB (Load balancer), Exhaust=ON >> ExhaustSpeed=High). Note
that the sequence and parallel operators are used for traversal of
a set of middleboxes in the case of ACL-based policies. In case of
trigger-action-based policies, it is used to represent the sequence of
actions. Also, in the trigger-action-based policy specification syntax,
actions are captured using the iot-commands-action keyword. The
wide range of attributes, keywords and symbols used in the policy
specification syntax is captured in Table 2.

4.2.4 Rogue Policies. VISCR’s abstraction trees and graph-based
specification allows the administrators to specify the policies explic-
itly using the abstraction trees exposed to each of the IoT users or
administrators. This approach of isolating and assigning explicit
infrastructure abstractions to each admin, allows VISCR to prevent
admins from specifying policies on the infrastructure they do not
own (i.e., called rogue policies). However, policies that are directly
specified using policy abstraction syntax (§4.2.3) (i.e., bypassing
the web-based user interface) may introduce violations. For detect-
ing rogue policies in syntax-based policy specification, the policy
composition engine extracts the source and target nodes from the
specified policy specification syntax and verifies if both the nodes
belongs to the policy abstraction trees owned by that administrator.
If the policy attributes used in the policy specification are part of
the abstraction trees assigned to that admin, then the policies are al-
lowed to perform actual policy composition to further detect other
conflicts and violations (discussed in Section 5.2). Policy violations
detected in this step are reported as rogue policies.

5 DECONFLICTION & SECURITY ANALYSIS
In this section, we discuss about graph-composition techniques and
security analysis used by VISCR for detecting variety of conflicts,
bugs and violations that arise among the automation rules.

5.1 Graph-based Composition
The policy composition in VISCR seeks to provide the following
capabilities: (i) composition of policies for proactively detecting

��A�E�
&���

�/�
�C">�>�F

7�)�E�=��)�E�
&��--

7>B�C,F
&��D�B

�-=�*F)
&���

�-=�*F)�5D����
&���-

5)E��A>B��
&���

		

		

MM

��

��"!>B���
5)�)��&�

�CEA�"

	���C-

��"!>B����
5)�)��&�

�A�E��B�L

�B>)>�"�5)�)�
��5C*E���

+�I>��

�E>���E�
�CB�>)>CB

��E��)��B)>)>�F�,>)=�

�)*�)>CB���
�)>CBF
�������ACI��
�/F

��E��)�5)�)��
����E��)�

+�I>�� MM

MM

MM

Figure 5: Dynamic trigger & action-based IoT policy specification.

Type Symbol Definition
Policy spec-
ification
keywords

location, devices, device-
type, device-vendor, par-
ent, traffic-type, source-
node, target-node, source-
state, target-state, etc.,

Keywords for capturing policy at-
tributes and the properties of the
IoT infrastructure.

Sequence &
Precedence
Operators

>> (serial or precedence),
| | (parallel), → (flow / ac-
tion sequence)

Operators to specify the sequence
of operations to be carried out in
policy.

Conditional
Operators

!, =, <, > Operations used to specify dynamic
conditions in the policy.

Composition
Operators

policy-add (+), policy-
remove (−)

Operators to add and remove poli-
cies from the existing list of policies.

Action at-
tributes /
Keywords

iot-commands-action, =>
(ALLOW), ! => (DENY)

Attributes or keywords used to
specify the actions to be taken in
the policies.

Table 2: List of keywords, attributes, operators and symbols used
in VISCR policy specification syntax.

conflicts in compile time rather than detecting at run time, (ii)
automatic resolution of conflicts using precedence mechanism, and
(iii) incremental composition that allows trigger-action policies to
adapt to the environment at runtime. However, allowing run-time
policy composition imposes stringent latency constraints. Hence,
policy composition time has to be minimized.

��!�1�#���>E>����.��.���=�>)�#�:1�=!&��E�)���.���=�.>!�!�E���=��:�&)
�� ��!������:1>���!��: E

	���=�>�>$�!����: �� 	���=�>�>!=����:���: ((
-�!�=.���!�=�>$�!�� � ��� ((
-�:1�$�>�:>�=>�>!�!� � ���: ((

C��">!.>$�!���>$�!�� � �: ��
C��">!.+��"��!��>���1 � ��C

) � *��!�

(a) Equivalent syntax for dynamic trigger–action IoT policies.
7'=�M�.3�N
��AA.9BGM�=G*.9BGN�'9F=C*M-3�1� �ADDF�N�<=,!�= ,=C<DFGM�=G*N�
�<=,!�= *L'=GM.9B=F9GN�*F9>>!� *L'=M-=:N����2�����*�C=*-DF"GM2C*=FC=*N

7'=�M�.3�N
��AA.9BGM�=G*.9BGN�'9F=C*M-3�1� �ADDF�N�<=,!�= ,=C<DFGM�=G*N��
<=,!�= *L'=GM.9B=F9GN�*F9>>!� *L'=M�N�1*��AA.9BGM�=G*.9BGN�'9F=C*M-3�1�
�ADDF�N�<=,!�= ,=C<DFGM-=A"!CN�<=,!�= *L'=GM.9B=F9GN

7'=�M�.3�N
��AA.9BGM�N�'9F=C*MCDC=N�<=,!�= ,=C<DFGM�N�<=,!�= *L'=GM.9B=F9GN��
*=B'DF9A G*9*=M	�������N�G=�IF!*L G*9*=M�DB'FDB!G=<N����2������

C=*-DF"GM2C*=FC=*N

(b) Equivalent policy specification syntax of ACL-based policies
(ACL1 – ACL3) illustrating different properties.

Figure 6: Examples of ACL-based & trigger and action-based IoT
policy specification syntax.

VISCR’s policy composition procedure involves following key
steps. First, the normalization step brings all the policies specified
by various administrators, using different abstraction trees, to a
common abstraction level for identification of contradictory and
duplicate policies. The second step, finds contradictions among
normalized policies by running composition engine and resolves the
conflicts using precedence rules. Unresolved conflicts are flagged
to the administrator.

5.1.1 Proactive & Incremental Composition. The goal of policy
composition mechanism is to produce conflict-free composed policy

5

Algorithm 1 Graph-based Policy Composition
1: L ← list of normalized policies to be added
2: s(p) ← source node of policy p
3: t (p) ← destination node of policy p
4: a(p) ← action of policy p
5: b((s, t)) ← action of edge (s, t)
6: G ← Composed graph
7: for all Policy p ∈ L do:
8: if s(p) ∈ G & t (p) ∈ G then
9: if (b(s, t) ∈ G & a(p) == b(s, t) then
10: Discard p ▷ Duplicate Policy
11: else if b(s, t) ∈ G & a(p) , b(s, t) then
12: Apply b(s, t) or a(p) based on precedence
13: Raise conflict alert if policies have equal precedence
14: else if b(s, t) < G then
15: Create b(s, t) from p
16: Add b(s, t) to G ▷ Add policy
17: else
18: if s(p) < G then
19: Create s(p)
20: if t (p) < G then
21: Create t (p)
22: Create b(s, t) from p
23: Add b(s, t) to G ▷ Add policy

return G

graph (example shown in Figure 7) that is derived by composing to-
gether overall vendor-independent graph-based policies (i.e., either
generated from IoT apps or specified directly by policy administra-
tors). In the final composed graph, the source and target entities
represent the devices or group of devices onto which policies are ex-
ecuted. The edges capture the set of conditions for policy activation
and the corresponding actions.

As a first step of policy composition, VISCR’s normalization
mechanism identifies the common abstraction level to which all
policies specified by administrators need to reduced for conflict de-
tection. If policies are specified using abstraction nodes at different
levels of an abstraction tree, composing policies without normal-
ization is an infeasible task. For example, consider two policies
specified using the abstractions BLDG1 and Floor2 (homogeneous
abstractions) or using BLDG1 and NestCams (heterogeneous ab-
stractions). Here, we do not know if the Floor1 node and Nest node
have any relation (i.e., subset, superset, or overlapping hosts or
devices) for composing them together into a single policy graph.
We resolve this issue by (a) automatically deriving relations across
non-leaf nodes of different abstraction trees and maintain these
relations as mappings i.e., capturing the details of set of devices
or hosts that belongs to each of these nodes of abstraction trees,
and (b) choosing an optimum level to which the nodes used in the
policy specification need to be normalized.
Normalization: A naive normalization approach is to bring all
the policies to the bottom most level, i.e. leaf node level which
captures the device-specific details for performing composition.
This approach increases complexity along two dimensions: (i) It
brings down all policies to the bottom most level even though very
small number of policies might need it, exponentially increasing
the composition times, and (ii) normalizing all the source and des-
tination policy nodes to bottom most level (i.e., to the level of leaf
nodes) also increases the enforcement complexity, due to increase
in the number of rules required to enforce the policies. Therefore,
VISCR finds an intermediate optimum level i.e., Enforcement Level
(ELevel) for each policy abstraction tree for effectively normaliz-
ing the policies. The enforcement level (ELevel) is chosen in such

�IN-!A�
/HMDMDAL

.AOD!AL �
,,,FD!>MDIHL �

5AMPI-EL

�HDMD>F��M>MA

�M>MA���
�IHDMI-DHC

�M>MA���
-I),-I)DLA

�D)A��&�7��
��
,�

�D)A��
,��
��&�7�

�D)A��&�7��
��
,�

�D)A��
,��
��&�7�

.AOD!AL �
,,,FD!>MDIHL �

5AMPI-EL

�A),��
	

�A),���
	

�IMDIH���
=/�

�>-CAM�
/HMDMDAL

�>-CAM��M>MA

�N-H�1A>MA-�
�00

�IMDIH�
��5�

�����

��
��
�

�����

�����

�����

��
��
�

0< .7�

�M>MAL���!IH"DMDIHL���
M-DCCA-L

50-���,!MDIHL�
$I-�,-�

��
��
�

,!MDIHL�$I-��-DCCA-�
,!MDIH��NFAL

�,AH�
.���

�,AH�
<DH"IP

�M>MA���
�N>->HMDHA

�DLLDHC��M>MA���
,LLI!D>MA"�7IFD!DAL

�M>MA���
5I-)>F

Figure 7: Sample outcome of graph-based policies composed to-
gether representing final composed policy graph. Possible missing
states are highlighted in the figure with dotted lines.

a way it would allow the policy enforcement engine to directly
compile/translate these composed policies to enforceable rules.

Mathematically, we represent the choice of enforcement level
as follows. Let Ki be the abstraction level using which a policy
Pi (i = 1, . . . ,N) is specified. Then, policy Pi can be normalized to
abstraction level Ai ≥ Ki . Thus, we aim to normalize to a level A
such that A ≥ Ai ∀i = 1, . . . ,N . However, the number of nodes
increases with an increase in Ai . Thus, our objective is to choose
the minimum value of A that satisfies above set of constraints, i.e.,

Minimize A subject to: A ≥ Ki ∀i = 1, . . . ,N . (1)

Algorithm 1 describes the graph-composition algorithm, which
accepts: (i) a list of graph-based policies that are normalized, and (ii)
an empty graph as input, which is used for storing the composed
policy graph. Each of the input policy is iteratively checked with the
composed graph for identifying an identical or conflicting policy.
Each policy’s source node, is compared with the source nodes of
the composed policy graph for checking the overlaps. Next, the
target node of the input policy is compared with the target nodes
of the composed policy graph. Finally, the conditions and action
attributes present along the edge of the input policy are compared
for overlaps with the edge attributes of the composed policy graph.

The algorithm attempts to resolve conflicts by checking whether
a precedence rules exists for any of the policies. Duplicate policies
are tracked separately and discarded from composition graph. If it
finds a conflicting policy that cannot be resolved with precedence,
the policy is dropped from the graph (Lines 11-13) and notified to
administrator. If it finds that the source node and the destination
node both exist and no conflicts are possible, the policy is then
added to the graph (Lines 14-16). Otherwise, it creates new nodes
and then adds the policies as edges to the graph (Lines 17-23).

To analyze the algorithmic time complexity, we need to evaluate
the cost of iterating over the complete list of policies (L), and adding
them to the composed Graph G. With the addition of each policy
to the composed policy graph G, the composition engine checks
for the existence of conflicts. The major time complexity of the
algorithm lies with the iteration of the policies O(L) over the list of
all source nodes Ls in the composed graph G, and then comparing
the policy’s source node s(p) to composed graph’s source nodes
S(G). Le is the list of edges for which the edge-properties overlap
with the policy’s edge among the overlapping source nodes. Also, Lt
is the list of target nodes of the edges of s(p) that actually overlaps
with the target node of the policy pi . Therefore, the overall worst-
case complexity is: O(L ∗ Ls ∗ Le ∗ Lt).

For reducing the composition complexity we employ hashing
mechanism and caching technique: (i) them host entries of s(p) are
hashed as key-value pairs and the host entities of S(G) are looked

6

up in the hash for the existence of the n hosts, reducing baseline
complexity will be reduced to: O(L ∗ Ls ∗ (m + n)). (ii) caching the
comparison calculation outcome as key-value pairs (s(p):S(G)) in
hash table reduces the overall baseline complexity to O(L ∗ Ls).

5.1.2 Precedence. Precedence rules are used to resolve con-
flicts among competing policies specified at different levels.
Administrator-level precedence evaluation is based on the scope
of authority of the policy author. For example, a campus-level ad-
ministrator in a smart campus may be granted precedence over a
building administrator; Action-level precedence allows for explicit
prioritization in action invocation. For example, for IoT traffic’s
ACL-based policies, Drop > Allow > Quarantine > Redirect can be
used as the precedence hierarchy. Similarly, in the case of trigger-
action-based policies, when the smoke detector is in fire-alarm

state, the action turn OFF heating is given higher precedence than
turn ON heating. Custom precedence enables policy attributes (e.g.,
user, device-type, device-state) to be associated with precedence.
Based on precedence, the overlapping nodes that result in con-
flict are removed and the edge specific to the policy with highest
precedence is retained.

5.1.3 Incremental Updates. The dynamic characteristics of the con-
sumer IoT infrastructure demand that the policy framework be
agile in enforcing new set of rules to IoT devices. Since complete
policy composition consumes time, up to a few minutes, efficient
re-composition techniques are required for rapid policy response.
Hence, we use incremental policy composition to ensure an expedi-
ent response to dynamic conflicts that arise in the network. The
composition engine recomposes only the updated set of policies
with the whole set of composed policies. Updating a policy from the
composition graph involves first deleting the policy from the graph,
and then inserting amodified version. Deleting a policy requires one
to remove the edges that belong to the policy from graph. However,
the composition procedure might have removed portions of other
policies that had a higher precedence during conflict resolution.
Hence, these lost portions must be returned.

Incremental policy composition reduces the time to react to dy-
namic state changes and enforce new rules under the following
scenarios: (i) Scenario 1: New polices are added or removed from
the IoT infrastructure; (ii) Scenario 2: IoT infrastructure changes
(e.g., device location updates, new devices added or existing devices
removed); and (iii) Scenario 3: IoT device-state changes (e.g., from
normal to compromised). Also, for run-time composition VISCR enu-
merates all the possibilities to pre-calculate the possible outcomes.
Hence, for run-time enforcement VISCR simply identifies the out-
come specific to the event and simply executes it, which can be
carried out in sub-second latency, much faster than incremental
composition.

5.2 Security Analysis & Policy Enforcement
In this section, we describe about: (i) how we use the composed pol-
icy graphs to perform security analysis for detecting the bugs and
violations, and (ii) conflict-free policy enforcement by reconciling
policies to device-specific rules.

5.2.1 Gap Analysis. Gap in the automation could leave the IoT
infrastructure in a state that is either unstable or unpredictable in
its behavior. Such dangling state could make IoT infrastructures
vulnerable to attacks. For example the policies S3, S4 and S8 shows

the gap in the automation with respect to its temporal and tem-
perature conditions (Table 4). It is evident from these policies that
during 8PM –9PM (conflict) 9PM – 8AM (Gap) the thermostat’s
temperature settings could not be effectively predicted. As listed
in Table 4, similar automation gap could be visible in other types
of policies specific to its spatial, security states and other environ-
mental conditions. Therefore, identifying the gap in automation is
key step towards detecting the potential bugs that might arise in
the IoT infrastructure during run-time.

The VICE module traverses through the final composed policy
graph to identify the missing states or conditions for which the
policies are not captured (as shown in Figure 7). This is achieved by
enumerating and verifying if the policies exist for all the possible
temporal, spatial and security conditions (e.g., states captured as
part of abstraction tree’s leaf nodes such as shown in Figure 3d),
which helps in identifying potentially missing policies i.e., gap in
automation. For example, the possible security states of IoT infras-
tructure could be Normal, compromised, monitoring and quarantine
(Figure 3d). By identifying the missing states and their associated
policies using the abstractions tree as reference, we can effectively
detect the gap in automation.

The completeness of the gap analysis depends on the abstraction
engine’s ability to extract all the possible states, conditions and
infrastructure details captured as part of the abstraction tree. For
example, the temporal, spatial and security abstractions that are
auto-generated by the abstraction engine could be verified by user
for its correctness, allowing the administrator to add the missing
states as leaf nodes to the abstraction trees.

5.2.2 Loops in Automation & Potential Conflicts. In general detect-
ing chains and loops within the automation rules is essential to
detect the potential conflicts and violations that might arise during
run-time, which are rather challenging to be detected at policy
compile time. From the composed policy graph, we detect the loops
as follows: (i) We check for existence of paths with in a composed
policy graph that has more than one trigger and action pair (i.e.,
chaining among policies). (ii) Check if any of the actions along the
path triggers back any of the events with in the chain. (iii) Check
if any of the actions along the path triggers any of the events with
in the chain resulting in taking different action, which results in
ambiguity and continuous toggling of states and actions. Loops
and chaining among the policies (e.g., policies S3, S4, S5 and S6 in
Table 4) with continuously toggling actions are marked as conflicts,
while the identified policy chains are marked for potential viola-
tions. These policies when realized together will result in either
unintended behavior, continuous toggling of actions or might result
in unsafe state i.e., leaves door locked or opened at unanticipated
time resulting safety violations or sets unintended temperature
conditions in home.

Consider for example policies S4, S6 and S9, which results in run-
time violations. These policies does not have any thing in common
except the actions taken by them i.e., S6 closes windows in case
of specific outdoor temperature, while S9 opens the windows in
case of raining and humidity. Therefore, identifying the run-time
conflicts is a challenging task with such policies. As a straw-man
solution one could mark all the policies that has conflicting actions
and lack of specific temporal attributes among these policies as
potential violation. Such approach will result in generating vast

7

���" ���
���" ����

���A

��C����� �

�B����

�
�
B�

"

�

��

�
�
B�

"

�

���

��
D

�
��

"�
�

���" �����

�B "����
� �

��B�"B������B�
� �

���E�
�"��

���F �����

	�"����B��B "

� B� ����B��B "

�!"�����"

����"�

���"� AB�B

� "�� ��

���� D�� ��

��B�"���������
��B��B "

	�"�����"�

(����) ��

Figure 8: Simulated smart building infrastructure with 907 IoT
Apps that uses groovy-based smartthings, OpenHAB rules, IFTTT-
based Applets and MUD profiles with 30 different devices from 8
vendors. For simplicity only 11 different types of devices are shown.

false positive. Exposing large number of false positives to novice
smart home users could prevent them from using the automation
framework, rendering these tools useless.

Therefore, it is essential to proactively identify potential viola-
tions and the policies suitably fine-tuned to avoid run-time viola-
tions. To identify potential run-time violations VISCR, checks for
mutually exclusiveness5 among the policies. For detecting potential
run-time violation, we build relation among all the events, states and
environmental conditions that are part of the IoT infrastructure and
cluster the events. By clustering the events, states and conditions,
we will be able to effectively detect if parameters among any two
policies are mutually exclusive or not. To achieve this, we encode
our policies [22] (i.e., captured as policy tuple: <source-node, source-
state, edge states/conditions, target-node, target-state, actions>) and
use k-means clustering with elbow method [23] for effectively clus-
tering different types of triggering conditions and associated states.
If the policy states and conditions are not mutually exclusive (i.e.,
on the basis of cluster distance) and pose conflicting actions are
considered to generate potential violations during run-time.

5.2.3 Policy Reconciliation. As discussed in Section 4.1, the policy
mappings (i.e., mapping between the IoT app and the respective
graph-based policy) maintained by the VISCR engine helps in ef-
fectively enforcing the policies after the conflicts are detected and
resolved. The conflict-free composed policy graph along with these
mappings are provided as input to the policy reconciliation engine
(Figure 1). We develop APIs that effectively leverage this association
and reconcile composed policy graph to device-specific IoT apps for
enforcement. The policies that are directly provided as graph-based
policy input to the VISCR are reconciled to device-specific rules and
distributed on to network of IoT devices on the basis of: (i) vendor-
type, (ii) device location, (iii) source devices that are generating the
triggering events, and (iv) destination nodes on which the actions
need to be enforced. Upon choosing the right set of devices on
which the rules are required to be placed, the reconciliation engine
translates it device-specific rules for configuring or programming
the specific device.

6 PROTOTYPE & EVALUATION
We developed the complete prototype implementation of VISCR
in Python and integrated it with our VISCR policy specification
dashboard. We implemented following components in VISCR:

5Two policies are mutually exclusive, when no two events, conditions or states among
these policies are not related to each other or can co-exist i.e., occur at the same
instance of time.

Policies Smart Building Policy Description
S1 Any time fire is detected, turn on sprinklers and cameras, and open all

locks (doors and windows)
S2 From 10PM to 7AM keep the outer doors and windows locked
S3 From 8AM to 9PM set the thermostat to 65◦F in bedrooms (kid)
S4 Between 6PM to 10PM (i.e., till 11PM) keep the main doors unlocked
S5 If main doors and windows are open for more than 5 minutes, turn OFF

the heating/cooling in that room to prevent energy wastage
S6 When outside temperature is between 60-75◦F open the windows and

turn OFF cooling
S7 Turn bedroom II Camera OFF (or no access) after 10PM (kid)
S8 If building temperature rises above 95◦F, lock all windows and reset the

thermostat to 65◦F
S9 In case of rain and humidity <40% and >50% close the windows
S10 Keep Camera ON in all rooms and access to it at any time (parent)

Table 3: Example list of smart building policies (S1-S10).

The abstraction engine of VISCR is integrated with vendor-
specific cloud data sources for extracting dynamic states and con-
figurations of IoT devices. We developed data-source drivers for IoT
devices which performs to key functions: (i) translates the states,
configurations, and logs of IoT devices into data tables, and (ii)
generate datalog rules required for automatically generating tree-
based infrastructure abstractions based on the abstraction mappings
supplied by administrators [24]. The data-push option provided by
each of the vendor’s cloud data-sources allows VISCR to capture
the logs and events specific to dynamic updates in the IoT network.

The graph-based policies specified using the abstraction tree
nodes are translated first into equivalent vendor-independent spec-
ification syntax and ultimately into a graph dictionary. We used
the networkx Python library[25] for capturing and building pol-
icy graphs. For visualizing graph-based policies and the composed
policy graph, we built the VISCR policy specification dashboard
integrated with networkx [25] and GraphViz library [26].

The composition engine captures the policies in networkx-based
graphs, runs normalization and composition algorithms to detect
the conflicts and resolves them using precedence rules that are
maintained as key value pairs. These conflict-free policies are fur-
ther analyzed for other bugs and violations. Finally, the composed
conflict-free policies are translated to enforceable rules i.e., IoT apps
and device-specific configurations. The VISCR’s policy composition
outcome is interfaced with the VISCR specification dashboard for
fine-tuning the policies before enforcement.

6.1 Evaluation
Testbed.We used simulated smart building IoT infrastructure with
907 IoT apps or automation policies framed with 30 different types
of consumer IoT devices from 8 different vendors framed for mul-
tiple floors of the building. For brevity few policies (Table 3) and
simulated smart building view of single floor shown in the Figure
8. The VISCR module is run on a Dell R710 server with 48GB RAM,
12 cores (2.6GHz) with Ubuntu 4.4.0-97-generic kernel.
Datasets. We use IoT market apps (i.e., both vetted and unvetted),
extracted from vendor marketplaces, and publicly available data
sources for the smart-home and smart-campus use cases [27–31],
also consolidated in our VISCR repository [32]. We have built fol-
lowing three datasets for our experiments:
DS-1: We simulate a smart building IoT infrastructure (Figure 8)
with multiple floors and automate it with 907 IoT apps. We use
907 Groovy-based IoT apps (i.e., homogeneous specifications) for
evaluating static analysis-based technique (such as Soteria [9])
and compare with VISCR. The same set of automation rules pro-
grammed with Groovy, OpenHAB, IFTTT, and MUD profiles (i.e.,
heterogeneous specifications) are used for evaluating VISCR.

8

Policy
Conflict

Conflict Description Conflict
Type

S1 , S2 When fire is detected between 10PM and 7AM by smoke
alarm (S1), all doors andwindows are unlocked (open).With
S2 both exterior door and all windows must be locked dur-
ing this time. This can result in exterior doors and windows
toggling from locked or unlocked resulting in unintended
behavior.

Static,
Loops

S1 , S9 If temperature raises above 90◦F, it will enforce that all
windows must be locked and thermostat be set to 65◦F (S9).
Conflicts with temperature raised due to fire event (S1).

Static

S3 , S4 ,
S5

Between 7PM and 9PM the outer door and windows are
locked, thus trigger for both S3 and S5 are valid as a result
system will toggle between turning off thermostat and set-
ting it to 65◦F. Similarly, S4 can further intervene due to
time overlap and can result in chain and again forming a
loop.

Chain,
Loop,
Gap

S5 , S6 When temperature outside is 60 – 75◦F, S6 opens the win-
dows, which can possibly trigger S5 given exterior doors
are unlocked too. This policy chaining might result in unin-
tended temperature conditions inside home.

Chain

S7 , S10 Rogue behaviour as S7 is set by parent and S10 set by kid
in accessing kid’s room Camera after 10PM.

Rogue

S3 , S8 Gap as condition is not specified for temperature less than
95◦F (i.e., between 74◦F to 95◦F).

Gap,
Static

S4 , S6 ,
S9

When it is both raining and temperature between 60 – 75◦F,
conflicting actions arise i.e., undecidable if windows should
be opened or closed

Potential
Viola-
tion

Table 4: Illustrating few types of the conflicts, bugs and violations
detected by VISCR for the policies described in Table 3.

DS-2: We use smart-home, smart-campus and smart-city abstrac-
tions dataset [28, 30, 33–35] for evaluating the performance of our
tree-based abstraction engine in constructing the abstraction trees.
DS-3: We have built tool to generate ≈20K synthetic policies em-
ulating the dataset DS-1, using the policy abstraction trees gen-
erated from DS-2. We use random sampling technique to select
the source nodes, destination nodes and edge properties (e.g., dy-
namic environmental states, conditions, and traffic type) from the
policy-abstraction trees.

6.1.1 Policy Abstraction. We evaluate the performance of policy
abstraction engine with smart city data of up to 100K devices using
DS-2. We built upto 400 policy abstraction trees with four levels of
abstractions using the dataset. For generating abstraction trees, the
abstraction engine need to join hundreds of data tables performing
thousands of table join operations. It took <1.2sec to generate
upto 400 abstraction trees with 100K leaf nodes in parallel (Figure
9a). The latency performance of abstraction engine stays mostly
linear considering the data join operations it performs to generate
the abstraction trees. Since extracting data from the network data
sources takes random times considering the network latency, we
discard network latency parameter in the calculation of abstract
tree generation.

6.1.2 Security Analysis. We evaluate the performance of our con-
flict detection and resolution engine with DS-1 (i.e., 907 IoT market
apps) simulated to program the smart building IoT infrastructure
(Figure 8) and compare it with Soteria’s violation detection mech-
anism. Applying model checking, we were able to find 6.6% of the
static violations across policies on DS-1, which includes both prop-
erty and state violations. As shown in Table 5, VISCR on the other
hand was able to find ∼37.7% of violations within same IoT apps in
DS-1. Importantly, VISCR detected 100% of the violations captured
by the static analysis technique such as Soteria. Among the 37.7%
of IoT apps VISCR reported 10.2% of IoT apps that has more than
one violations. Importantly, different class of violations reported
by VISCR is illustrated with examples in Table 4.

Security Analysis % IoT App
Violations

% False
Positives

Compile time conflicts 6.6 0
Potential run-time violations 7.9 1.8
Gap analysis 10.4 1.3
Rogue Policies 3.8 0
Access violations 1.6 0
App sanity checker (SC) 4.2 0.7
Loops & chains 3.2 0
Overall 37.7 3.8

Table 5: Bugs and violations detected on smart building IoT infras-
tructure dataset DS-1.

In addition, VISCR identifies following major types of conflicts
and violations: (i) gap in automation due to the inability of users to
completely realize the use-case scenario resulted in 10.4% of total
IoT apps being violated with 1.3% false positives; (ii) code-sanity
and programming errors in temporal and spatial policies as well as
policies involving specific values (e.g., temperature, humidity, time,
space) resulted in 4.2% of violations with 0.7% false positives, where
the undefined references are upto 1.1% and unused structures are
upto 2.1% of policies; (iii) policies that results in access violations
due prolonged access to resources beyond the specified period of
time counted upto 1.6% of IoT apps; (iv) rogue policies that are
implemented by administrators who are not authorized to specify
policies on portion of IoT infrastructures that they should not be
enforcing rules (with 3.8% of total IoT apps violated); (v) poten-
tial run-time violations that are detected from the policies, which
includes 7.9% of total violations; and (vi) finally, detected 3.2% of
loops among the automation rules that resulted in the unintended
and unsafe environmental conditions. Overall, VISCR was able to
detect the above discussed violations and bugs with less than 3.8%
of false positives or low intensity bugs such as Unused variables or
structures and potential violations.

6.1.3 Policy Composition. The composition cost depends on fol-
lowing two factors: (i) the number of attributes or states used in the
IoT apps, and (ii) the number of IoT apps. In this experiment, we per-
form composition with increasing number of IoT apps (i.e., in subset
of 100 apps in each iteration) and capture its composition latency.
We keep number of attributes constant at ∼30 in this experiment
(i.e., the IoT apps or automation use-cases are chosen only specific
to these attributes). For example, temperature is considered as an
attribute, while the subcategories (e.g., high, low, different levels)
of the attribute are still considered as part of the same temperature
attribute. We observed that VISCR took ∼80.7 seconds to compose
907 apps, while using model checking (i.e., such as technique used
in Soteria) took approximately 14.2× more time to run, which
took ∼1147 seconds to detect the conflicts (Figure 9b).

In the next experiment, we evaluate performance of conflict
detection engine with increasing number of attributes and constant
number of IoT apps (i.e., 907). With increase in number of attributes,
the composition (i.e., conflict detection) cost of both the approaches
increased. VISCR took 231 seconds to compose 907 IoT apps and
100 different attributes, while Soteria took ∼3140 seconds, which
is ∼13× more time required to detect conflict (Figure 9c).

Following are the vital factors that contribute to improved per-
formance (i.e., reduced conflict detection time with our graph-based
composition) compared to Soteria: (i) The complex SAT formula-
tion resulting in enumeration of all possible states required to detect
the static violations. (ii) Our approach optimizes the composition
cost by parallelizing the translation procedure (i.e., translation of
IoT apps to vendor-independent graph-based specification); (iii)

9

0 10 20 30 40 50 60 70 80 90 100
Leaf Nodes (Devices) × 1000

0

200

400

600

800

1000

1200

1400
La

te
nc

y
(m

s)

(a) Average latency in building
abstraction trees in parallel with
increasing # leaf nodes.

0 200 400 600 800
IoT Market App Programs

101

102

103

Ti
m

e(
se

c)

VISCR
Soteria

(b) Average composition latency
with increasing # IoT apps (with
∼30 policy attributes).

5 25 45 65 85
IoT Automation Attributes

101

102

103

104

Ti
m

e(
se

c)

VISCR Soteria

(c) Average composition la-
tency with increasing # policy
attributes (with 907 IoT apps).

1 2 3 4
Depth

0

200

400

600

800

La
te

nc
y

(s
ec

)

(d) Policy composition latency
for ∼20K synthetic policies with
abstraction tree depth.

Figure 9: Scalability of VISCR’ policy abstraction & composition engine compared to static analysis-based technique (Soteria).

With graph-based composition, we incrementally verify the source
nodes and if the overlap exists then further into edge and target
properties. This results in avoiding unnecessary comparison oper-
ation resulting in improved composition cost with our approach.
and (iv) Finally, the graph-based composition mechanism generates
the composed graph islands (i.e., policy graphs that are completely
independent), when once a policy is detected as conflicting with
one of the policy graph island, the policy is marked as conflicting
avoiding comparison with other nodes with in the same composed
graph and other graph islands. In addition, to provide fair compari-
son, we ran VISCR with 907 groovy-based apps, our composition
engine took <92.1 seconds to compose these apps.

As VISCR also support incremental composition (i.e., to support
dynamic changing IoT infrastructure), we evaluate the performance
of the incremental composition as follows. We compose 907 IoT
apps and generate the composed policy graph. We then randomly
choose 100 IoT apps each time and change its attributes and allow
it to incrementally recompose. From our experiments, it is evident
that for recomposing 10 IoT app programs took <2.1 seconds, while
recomposing 100 apps took ∼16.3 seconds. In normal working con-
ditions of any IoT infrastructure, it is expected to have fewer than
10 IoT app change at any instance of time.

Finally, we evaluate the performance of VISCR with large scale
synthetic dataset (DS-3) to emulate the smart city IoT infrastruc-
tures with ∼20K graph-based policies. We composed 20K graph-
based policies by choosing the source and target nodes of the poli-
cies at different levels of abstraction trees i.e., choosing nodes at
depth level 1 – level 4 of abstraction tree. We run this experiment
for multiple iterations to capture the average composition engine
latency. For depth level = 1, the composition cost is much higher
than when policy abstracts are chosen at level 4 as the nodes are
chosen more towards leaf node level results in much lesser normal-
ization cost. Therefore, 90% of the time our tool took <760 seconds
to compose 20K policies specified at level 1. Similarly for composing
the policies specified at level 4 VISCR took <300 seconds.

7 RELATEDWORK
Intent-based policies that are studied in the context of enterprise
networks are limited in flexibility for handling complex and het-
erogeneous IoT devices [36, 37]. To overcome these limitations in
enterprise scenarios, recent works propose the creation of high-
level intent-based languages, compilers and conflict detection mech-
anisms [38–53], and new SDN programming paradigms [54–56].
Prior efforts to develop graph-based policy specification mecha-
nisms (PGA [19], Janus [57], LMS [24]) have focused on enterprise
networks. However, these graph-based policy frameworks do not

effectively handle dynamic trigger and action-based policies re-
quired by IoT devices. Hence, we propose to develop an intuitive
graph-based policy framework that handles dynamic trigger and
action-based policies and supports vendor-agnostic specification
models to seamlessly accommodate different types of IoT programs
including Groovy, OpenHAB, IFTTT, and MUD profiles.

Verification and testing of dynamic policies for middleboxes are
well-studied problems [58–65]. Unlike our work, prior studies do
not address the dynamic group-based policy requirement of IoT in-
frastructures to handle safety, security, and privacy policies. Recent
efforts have attempted to use formal verification techniques and
static taint tracking to verify the correctness of deployed automa-
tion policies in homogeneous IoT environments [9, 66–69]. Simi-
larly, recently proposed works highlighted the need for novel access
control models and policies to secure IoT infrastructures [8, 70].
However, existing IoT infrastructures are dynamic with diverse IoT
devices, programmed using heterogeneous programming frame-
works, that make static-verification techniques ineffective [9]. Also,
a few recent studies that focus on identifying the policy conflicts
arising in complex smart-city infrastructures [71, 72] do not deal
with security or privacy issues. We propose to build a vendor-
independent model, that allows automation rules or policies, speci-
fied usingmultiple commodity IoT apps to be translated into vendor-
independent policy-specification graphs for robust and proactive
conflict detection and resolution.

8 CONCLUSION
Emerging consumer IoT infrastructures are characterized by a grow-
ing number of heterogeneous devices. VISCR provides a unified
policy engine that allows for conflict-free policy specification and
enforcement in such environments. VISCR achieves this by unify-
ing policy abstractions, automatically extracting IoT infrastructure
topology and converting diverse policy languages such as Groovy-
based SmartThings, OpenHAB, IFTTT-based templates, and MUD-
based profiles into a vendor-independent graph-based specification.
These abstractions enable VISCR to detect rogue policies, bugs, and
conflicts. They also allow for easier specification and efficient com-
position of dynamic policy intents, from users and administrators.
In a dataset of 907 IoT market apps with a mix of Groovy, OpeHAB,
IFTTT, and MUD-based policies, VISCR detected conflicts in 342
apps, provided resolution mechanisms in under 81 seconds, and
adapted to new policies with sub-second latency.

9 ACKNOWLEDGMENTS
This work was partially supported by NSF grants CNS-1642965 and
CNS-1514503.

10

REFERENCES
[1] The Future Smart Home: 500 Smart Objects Will Enable New Business Opportu-

nities., March 2014. http://www.gartner.com/newsroom/id/2839717.
[2] Gartner Says 8.4 Billion Connected "Things" Will Be in Use in 2017, Up 31 Percent

From 2016, November 2017. https://www.gartner.com/newsroom/id/3598917.
[3] OpenHAB Textual Rules, October 2018. https://www.openhab.org/docs/

configuration/rules-dsl.html.
[4] Apple’s Homekit. Accessed. March 2017. https://developer.apple.com/homekit/.
[5] Samsung SmartThings Public GitHub Repo. Accessed. 2017. https://github.com/

SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/
smartthings/camera-power-scheduler.src/camera-power-scheduler.groovy.

[6] Manufacturer Usage Description (MUD) Specification, October 2018. https:
//tools.ietf .org/html/draft-ietf-opsawg-mud-25.

[7] Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and Atul Prakash. Decoupled-
IFTTT: Constraining Privilege in Trigger-Action Platforms for the Internet of
Things. CoRR, abs/1707.00405, 2017.

[8] Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Dürmuth, Ear-
lence Fernandes, and Blase Ur. Rethinking access control and authentication for
the home internet of things (IoT). In 27th USENIX Security Symposium (USENIX
Security 18), pages 255–272, Baltimore, MD, 2018. USENIX Association.

[9] Z. Berkay Celik, Patrick McDaniel, and Gang Tan. Soteria: Automated IoT safety
and security analysis. In 2018 USENIX Annual Technical Conference (USENIX ATC
18), pages 147–158, Boston, MA, 2018. USENIX Association.

[10] Z Berkay Celik, Gang Tan, and Patrick McDaniel. IoTGUARD: Dynamic Enforce-
ment of Security and Safety Policy in Commodity IoT.

[11] OpenHAB: Rules not running. May 2018. https://community.openhab.org/t/
solved-rules-not-running/45776.

[12] OpenHAB: Turn light OFF based on timer. March 2017. https://
community.openhab.org/t/turn-light-off-based-on-timer/9558/30.

[13] SmartThings Community Discussions. March 2019. https:
//community.smartthings.com/c/smartapps.

[14] Garadget IFTTT Errors. March 2019. https://community.garadget.com/t/ifttt-
errors/4103.

[15] Apple HomePod Communities. March 2019. https://discussions.apple.com/
community/homepod.

[16] IFTTT: Samsung SmartThings. Accessed. 2017. https://ifttt.com/smartthings.
[17] The 5 Worst Examples of IoT Hacking and Vulnerabilities in Recorded History,

May 2017. https://www.iotforall.com/5-worst-iot-hacking-vulnerabilities/.
[18] ISTR, Internet Security Threat Report, April 2016. https://www.symantec.com/

content/dam/symantec/docs/reports/istr-21-2016-en.pdf.
[19] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya

Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying Zhang.
Pga: Using graphs to express and automatically reconcile network policies. In
Proceedings of the 2015 ACM Conference on Special Interest Group on Data Com-
munication, SIGCOMM ’15, pages 29–42, New York, NY, USA, 2015. ACM.

[20] Nest Cloud APIs. April 2017. https://developers.nest.com/documentation/cloud/
get-started.

[21] Samsung Cloud APIs. April 2017. http://developer.samsung.com/smart-home.
[22] Sklearn: LabelBinarizer. https://scikit-learn.org/stable/modules/generated/

sklearn.preprocessing.LabelBinarizer.html.
[23] Using the elbowmethod to determine the optimal number of clusters for k-means

clustering . https://bl.ocks.org/rpgove/0060ff3b656618e9136b.
[24] J. M. Kang, J. Lee, V. Nagendra, and S. Banerjee. LMS: Label Management Service

for intent-driven Cloud Management. In 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), pages 177–185, May 2017.

[25] Networkx Graph Creation. Accessed. December 2017. https:
//networkx.github.io/documentation/networkx-1.7/tutorial/tutorial.html.

[26] Graphviz - Graph Visualization Software. https://www.graphviz.org/.
[27] IoT TestBench: A micro-benchmark suite to assess the effectiveness of tools

designed for IoT apps . https://github.com/IoTBench/IoTBench-test-suite.
[28] Sean Barker, Aditya Mishra, David Irwin, Emmanuel Cecchet, Prashant Shenoy,

and Jeannie Albrecht. Smart*: An open data set and tools for enabling research
in sustainable homes. SustKDD, August, 111:112, 2012.

[29] Smart Home Data Set for Sustainability). December 2017. http://
traces.cs.umass.edu/index.php/Smart/Smart.

[30] SFO City scale data set (City facilities). December 2017. https://data.sfgov.org.
[31] Charith Perera, Yongrui Qin, Julio C. Estrella, Stephan Reiff-Marganiec, and

Athanasios V. Vasilakos. Fog computing for sustainable smart cities: A survey.
ACM Comput. Surv., 50(3):32:1–32:43, June 2017.

[32] Secure, Safe and Privacy With IoT Infrastructures Policy Framework and Dataset.
Accessed. March 2019. Anonymized for double blinded review.

[33] SFO City scale data set (Locations and Boundaries). December 2017.
https://data.sfgov.org/Geographic-Locations-and-Boundaries/List-of-Streets-
and-Intersections/pu5n-qu5c.

[34] SFO City scale data set (Traffic Signals). December 2017. https://data.sfgov.org/
Transportation/Map-of-Traffic-Signals/8xta-sna8.

[35] SFO City scale data set (City facilities). December 2017. https://data.sfgov.org/
City-Infrastructure/Map-of-City-Facilities/bps8-63cu.

[36] John Strassner. Policy-Based Network Management: Solutions for the Next Genera-
tion (The Morgan Kaufmann Series in Networking). Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 2003.
[37] D. C. Verma. Simplifying network administration using policy-based manage-

ment. IEEE Network, 16(2):20–26, Mar 2002.
[38] Steffen Smolka, Spiridon Eliopoulos, Nate Foster, and Arjun Guha. A fast compiler

for netkat. In Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2015, pages 328–341, New York, NY, USA, 2015.
ACM.

[39] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. Frenetic: A network programming
language. In Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’11, pages 279–291, New York, NY, USA, 2011.
ACM.

[40] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C. Mitchell, and
Scott Shenker. Practical declarative network management. In Proceedings of the
1st ACM Workshop on Research on Enterprise Networking, WREN ’09, pages 1–10,
New York, NY, USA, 2009. ACM.

[41] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. Composing software-defined networks. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation, nsdi’13, pages 1–14,
Berkeley, CA, USA, 2013. USENIX Association.

[42] Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone, Robert
Kleinberg, Emin Gun Sirer, and Nate Foster. Merlin: A language for provisioning
network resources. In Proceedings of the 10th ACM International on Conference on
Emerging Networking Experiments and Technologies, CoNEXT ’14, pages 213–226,
New York, NY, USA, 2014. ACM.

[43] C. Trois, M. D. Del Fabro, L. C. E. de Bona, and M. Martinello. A survey on sdn
programming languages: Toward a taxonomy. IEEE Communications Surveys
Tutorials, 18(4):2687–2712, Fourthquarter 2016.

[44] Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and Paul Hudak.
Maple: Simplifying sdn programming using algorithmic policies. In Proceedings
of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages 87–98,
New York, NY, USA, 2013. ACM.

[45] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker.
Don’t mind the gap: Bridging network-wide objectives and device-level configu-
rations. In Proceedings of the 2016 Conference on ACM SIGCOMM 2016 Conference,
SIGCOMM ’16, pages 328–341, New York, NY, USA, 2016. ACM.

[46] R. Cohen, K. Barabash, B. Rochwerger, L. Schour, D. Crisan, R. Birke, C. Minken-
berg, M. Gusat, R. Recio, and V. Jain. An intent-based approach for network
virtualization. In 2013 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013), pages 42–50, May 2013.

[47] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram
Krishnamurthi. Hierarchical policies for software defined networks. In Proceed-
ings of the First Workshop on Hot Topics in Software Defined Networks, HotSDN
’12, pages 37–42, New York, NY, USA, 2012. ACM.

[48] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky H.Y.Wong, andHongyi Zeng. Robotron:
Top-down Network Management at Facebook Scale. In Proceedings of the 2016
ACM SIGCOMM Conference, SIGCOMM ’16, pages 426–439, New York, NY, USA,
2016. ACM.

[49] Anduo Wang, Xueyuan Mei, Jason Croft, Matthew Caesar, and Brighten Godfrey.
Ravel: A Database-Defined Network. In Proceedings of the Symposium on SDN
Research, SOSR ’16, pages 5:1–5:7, New York, NY, USA, 2016. ACM.

[50] Yifei Yuan, Dong Lin, Rajeev Alur, and Boon Thau Loo. Scenario-based program-
ming for sdn policies. In Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies, CoNEXT ’15, pages 34:1–34:13, New
York, NY, USA, 2015. ACM.

[51] OpenDaylight Group Policy. Accessed. 2017. https://wiki.opendaylight.org/
view/GroupPolicy:Main.

[52] Anu Mercian, Felipe Yrineu, Joon-Myung Kang, Raphael Amorim, Saket M Ma-
hajani, Mario Sanchez and Sujata Banerjee. Network Intent Composition (NIC) Be
Feature Update and Demo: Intent Compilation, Lifecycle Management and Auto-
mated Mapping, Presented in OpenDaylight Summit 2016. http://sched.co/7RBY.

[53] Nanxi Kang, Ori Rottenstreich, Sanjay Rao, and Jennifer Rexford. Alpaca: Com-
pact Network Policies with Attribute-carrying Addresses. In Proceedings of the
11th ACM Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’15, pages 7:1–7:13, New York, NY, USA, 2015. ACM.

[54] Boulder: Intent based North Bound Interface (NBI). February 2015. https://bit.ly/
37w33r9.

[55] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram
Krishnamurthi. Participatory Networking: An API for Application Control of
SDNs. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
SIGCOMM ’13, pages 327–338, New York, NY, USA, 2013. ACM.

[56] M. Pham and D. B. Hoang. SDN applications - The intent-based Northbound
Interface realisation for extended applications. In 2016 IEEE NetSoft Conference
and Workshops (NetSoft), pages 372–377, June 2016.

[57] Anubhavnidhi Abhashkumar, Joon-Myung Kang, Sujata Banerjee, Aditya Akella,
Ying Zhang, and Wenfei Wu. Supporting Diverse Dynamic Intent-based Policies
Using Janus. In Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies, CoNEXT ’17, pages 296–309, New
York, NY, USA, 2017. ACM.

11

http://www.gartner.com/newsroom/id/2839717
https://www.gartner.com/newsroom/id/3598917
https://www.openhab.org/docs/configuration/rules-dsl.html
https://www.openhab.org/docs/configuration/rules-dsl.html
https://developer.apple.com/homekit/
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/camera-power-scheduler.src/camera-power-scheduler.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/camera-power-scheduler.src/camera-power-scheduler.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/camera-power-scheduler.src/camera-power-scheduler.groovy
https://tools.ietf.org/html/draft-ietf-opsawg-mud-25
https://tools.ietf.org/html/draft-ietf-opsawg-mud-25
https://community.openhab.org/t/solved-rules-not-running/45776
https://community.openhab.org/t/solved-rules-not-running/45776
https://community.openhab.org/t/turn-light-off-based-on-timer/9558/30
https://community.openhab.org/t/turn-light-off-based-on-timer/9558/30
https://community.smartthings.com/c/smartapps
https://community.smartthings.com/c/smartapps
https://community.garadget.com/t/ifttt-errors/4103
https://community.garadget.com/t/ifttt-errors/4103
https://discussions.apple.com/community/homepod
https://discussions.apple.com/community/homepod
https://ifttt.com/smartthings
 https://www.iotforall.com/5-worst-iot-hacking-vulnerabilities/
 https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
 https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://developers.nest.com/documentation/cloud/get-started
https://developers.nest.com/documentation/cloud/get-started
http://developer.samsung.com/smart-home
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelBinarizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelBinarizer.html
https://bl.ocks.org/rpgove/0060ff3b656618e9136b
https://networkx.github.io/documentation/networkx-1.7/tutorial/tutorial.html
https://networkx.github.io/documentation/networkx-1.7/tutorial/tutorial.html
https://www.graphviz.org/
https://github.com/IoTBench/IoTBench-test-suite
http://traces.cs.umass.edu/index.php/Smart/Smart
http://traces.cs.umass.edu/index.php/Smart/Smart
https://data.sfgov.org
https://data.sfgov.org/Geographic-Locations-and-Boundaries/List-of-Streets-and-Intersections/pu5n-qu5c
https://data.sfgov.org/Geographic-Locations-and-Boundaries/List-of-Streets-and-Intersections/pu5n-qu5c
https://data.sfgov.org/Transportation/Map-of-Traffic-Signals/8xta-sna8
https://data.sfgov.org/Transportation/Map-of-Traffic-Signals/8xta-sna8
https://data.sfgov.org/City-Infrastructure/Map-of-City-Facilities/bps8-63cu
https://data.sfgov.org/City-Infrastructure/Map-of-City-Facilities/bps8-63cu
https://wiki.opendaylight.org/view/Group_Policy:Main
https://wiki.opendaylight.org/view/Group_Policy:Main
http://sched.co/7RBY
https://bit.ly/37w33r9
https://bit.ly/37w33r9

[58] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford, and
David Walker. SNAP: Stateful Network-Wide Abstractions for Packet Processing.
CoRR, abs/1512.00822, 2015.

[59] Seyed K. Fayaz and Vyas Sekar. Testing Stateful and Dynamic Data Planes with
FlowTest. In Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, HotSDN ’14, pages 79–84, New York, NY, USA, 2014. ACM.

[60] Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, and Vyas Sekar.
BUZZ: Testing Context-dependent Policies in Stateful Networks. In Proceedings
of the 13th Usenix Conference on Networked Systems Design and Implementation,
NSDI’16, pages 275–289, Berkeley, CA, USA, 2016. USENIX Association.

[61] Seyed Kaveh Fayazbakhsh, Vyas Sekar, Minlan Yu, and Jeffrey C.Mogul. FlowTags:
Enforcing Network-wide Policies in the Presence of Dynamic Middlebox Actions.
In Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, HotSDN ’13, pages 19–24, New York, NY, USA, 2013. ACM.

[62] B. Tschaen, Y. Zhang, T. Benson, S. Banerjee, J. Lee, and J. M. Kang. SFC-Checker:
Checking the correct forwarding behavior of Service Function chaining. In
2016 IEEE Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), pages 134–140, Nov 2016.

[63] Wenfei Wu, Ying Zhang, and Sujata Banerjee. Automatic Synthesis of NF Models
by Program Analysis. In Proceedings of the 15th ACM Workshop on Hot Topics in
Networks, HotNets ’16, pages 29–35, New York, NY, USA, 2016. ACM.

[64] Y. Zhang, W. Wu, S. Banerjee, J. M. Kang, and M. A. Sanchez. SLA-verifier:
Stateful and quantitative verification for service chaining. In IEEE INFOCOM
2017 - IEEE Conference on Computer Communications, pages 1–9, May 2017.

[65] H. Kim and N. Feamster. Improving network management with software defined
networking. IEEE Communications Magazine, 51(2):114–119, February 2013.

[66] Wenbo Ding and Hongxin Hu. On the Safety of IoT Device Physical Interaction
Control. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, pages 832–846, New York, NY, USA, 2018.
ACM.

[67] Abdullah Al Farooq, Ehab Al-Shaer, Thomas Moyer, and Krishna Kant. IoTC2:
A Formal Method Approach for Detecting Conflicts in Large Scale IoT Systems.
CoRR, abs/1812.03966, 2018.

[68] Emre Göynügür, Sara Bernardini, Geeth de Mel, Kartik Talamadupula, and Murat
Şensoy. Policy conflict resolution in IoT via planning. In Canadian Conference on
Artificial Intelligence, pages 169–175. Springer, 2017.

[69] Z. Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan,
Patrick McDaniel, and A. Selcuk Uluagac. Sensitive Information Tracking in
Commodity IoT. In 27th USENIX Security Symposium (USENIX Security 18), pages
1687–1704, Baltimore, MD, 2018. USENIX Association.

[70] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. Situational Access Control
in the Internet of Things. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, pages 1056–1073, New York,
NY, USA, 2018. ACM.

[71] Meiyi Ma, Sarah Masud Preum, and John A. Stankovic. CityGuard: A Watchdog
for Safety-Aware Conflict Detection in Smart Cities. In Proceedings of the Second
International Conference on Internet-of-Things Design and Implementation, IoTDI
’17, pages 259–270, New York, NY, USA, 2017. ACM.

[72] M. Ma, S. M. Preum, W. Tarneberg, M. Ahmed, M. Ruiters, and J. Stankovic.
Detection of Runtime Conflicts among Services in Smart Cities. In 2016 IEEE
International Conference on Smart Computing (SMARTCOMP), pages 1–10, May
2016.

12

	Abstract
	1 Introduction
	2 Challenges and Research Goals
	2.1 Intuitive Policy Specification
	2.2 Conflict Detection & Resolution

	3 VISCR: System Overview
	4 Vendor-Independent Specification
	4.1 Vendor-Independent Model
	4.2 Abstractions & Graph-based Specification

	5 Deconfliction & Security Analysis
	5.1 Graph-based Composition
	5.2 Security Analysis & Policy Enforcement

	6 Prototype & Evaluation
	6.1 Evaluation

	7 Related Work
	8 Conclusion
	9 ACKNOWLEDGMENTS
	References

