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Abstract—We use a crowdsourcing approach for RF spectrum
patrolling, where heterogeneous, low-cost spectrum sensors are
deployed widely and are tasked with detecting unauthorized
transmissions while consuming only a limited amount of re-
sources. We pose this as a signal detection problem where the
individual sensor’s detection performance may vary widely based
on their respective hardware or software configurations, but are
hard to model using traditional approaches. Still an optimal
subset of sensors and their configurations must be chosen to
maximize the overall detection performance subject to given
resource (cost) limitations. We present the challenges of this
problem in crowdsourced settings and propose a set of methods
to address them. These methods use data-driven approaches
to model individual sensors and exploit mechanisms for sensor
selection and fusion while accounting for their correlated nature.
We present performance results using examples of commodity-
based spectrum sensors and show significant improvements
relative to baseline approaches.

I. INTRODUCTION

With growing realization of mobile communication’s impact
on the nation’s economic prosperity, RF spectrum has emerged
as an important natural resource that is in limited supply [1].
While various spectrum sharing models are being developed to
improve spectrum usage, ‘spectrum patrolling’ to detect unau-
thorized spectrum use is emerging as a critical technology [2].
Such unauthorized uses can take many forms, such as lower-
tier devices accessing spectrum reserved for higher tier devices
in a tiered spectrum sharing model [3], unauthorized devices
accessing licensed spectra using software radios, or denials of
service attacks. Techniques must be developed to detect such
unauthorized accesses and large-scale spectrum monitoring is
one effective way to do this.

However, large-scale spectrum monitoring using lab-grade
spectrum analyzers is not scalable, given that such devices
cost anywhere from several thousands to tens of thousands of
US$ depending on the exact capability and require availability
of AC power. Several recent papers have proposed to address
this scalability issue by deploying low-cost, small form-factor,
low-power spectrum sensors in large numbers perhaps using
a crowdsourcing paradigm [4, 5, 6].1 The overall monitoring

1There is at least one commercially successful crowdsourced application of
spectrum sensing. FlightAware [7] deploys low-cost sensors via crowdsourcing
to detect signals from aircrafts flying overhead.
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performance achieved by a large number of such low-cost
sensors can exceed that of a handful of lab-grade spectrum
analyzers while costing several orders of magnitude less [4].
Due to this reason, there is a growing body of literature in
studying the performance characteristics of commodity-based
inexpensive sensors [8, 9, 6].

Although using inexpensive, commodity-grade sensors
in large numbers may provide a very encouraging cost-
performance tradeoff, use of a crowdsourcing paradigm brings
in certain management problems. Spectrum patrolling must
involve signal detection. It is unlikely that all deployed sensors
will be used in specific detection tasks [4]. Only a subset
will be typically employed ensuring that a required level
of detection performance is achieved. This conserves the
backhaul bandwidth and also energy when the sensors are
battery operated (e.g., when mobile phones serve as spectrum
sensors [8]). In case of multiple sensing needs in the same
geographical space (e.g., detecting specific signals in multiple
spectrum bands), sensors may need to be configured to engage
in one specific task as their processing powers may not be
sufficient for multiple concurrent signal detection tasks. The
broad goal of this work is to develop mechanisms to select
the right set of sensors that optimizes the performance of
detection task for a given cost. There are two sub-problems
that arise: 1) modeling individual sensor performance and
cost for given configurations, 2) fusing data from multiple
sensors and selecting the optimal subset to maximize detec-
tion performance subject to cost limitations (or, minimizing
cost subject to a given detection performance). While these
problems are not entirely new in a general sense, the specific
nature of crowdsourced spectrum patrolling problem makes
them challenging.
Challenge 1 – Modeling Individual Sensors: Fundamentally
spectrum sensors must perform a signal detection task in
form of a binary hypothesis testing (intruding transmitter
present/absent). Detection performance is usually character-
ized by standard metrics like probability of detection (PD )
and false alarm rate (PFA). Assigning a specific sensor to
a specific sensing task and choosing specific configurations,
requires accurate estimation of its PD and PFA metrics and
cost for such configurations. Modeling of the cost depends
on the scenario and can include, e.g., energy cost, backhaul
data cost or any form incentives to be paid to the owner of
the sensor. However, given the heterogeneity and diversity
of spectrum sensors, in a crowdsensing paradigm estimating
such metrics accurately is challenging. Existing literature
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extensively uses so-called first principles modeling approach
that could miss various forms of imperfections (e.g., clock
skew, I/Q imbalance, RF front end non-linearity) and noises
common in commodity platforms. Even when they are able to
account for those, they require knowledge of internal details of
the sensor or separate calibration efforts. These are either not
practical or do not scale well. More specifics of these issues
are discussed in Section II.

Instead of relying on first principles models, we use a data-
driven (blackbox) approach where models are created based
on data from prolonged observation of the sensor. This type
of approach is getting traction in other communities such as
industrial process control where first-principles approaches are
not practical for largely similar reasons (see, e.g., [10]).
We abstract out the observable and easily quantifiable pa-
rameters of a sensor, its operating environment or runtime
configuration. We use machine learning methods that treat the
internal sensor hardware information (otherwise inaccessible)
as hidden variables. This gives our methodology a direct and
practical advantage over involved analytical models. Second,
such models get richer with time and can easily accommodate
new sensors without the need of explicitly calibrating them,
an otherwise impossible task.
Challenge 2 – Sensor Selection and Fusion: Once individual
sensors are modeled, we must select the subset of sensors
(and their configurations if they are configurable) to achieve
the best cost-performance tradeoff, i.e., the best detection
performance for a given total cost (or minimum cost for a
given desired performance). Here, the local sensor decisions
(target present/absent) are to be combined into a global ‘fused’
decision. Thus, a fusion rule is needed. While there is a
very rich literature on sensor fusion and developing optimal
fusion rules, most techniques in the literature assume that
sensor decisions are conditionally independent. This is not
true for spectrum sensors, where their decisions could be
correlated depending on the sensor locations. The reason is
that sensors located in the same neighborhood are likely to face
the same fading environment, resulting in correlations in their
observations/decisions. The case for correlated observations
have been indeed studied (see, e.g., [11, 12, 13]). But these
methods are either too complex computationally to implement
in practical systems and/or require prior knowledge of the
correlation structure (e.g., in terms of higher-order moments of
the sensor observations under each hypothesis [11] or spatial
correlation coefficient [14]). Also, these techniques do not help
addressing the sensor selection problem.

To handle this problem, we use a variant of sensor selection
from machine learning literature called Maximum Relevance
Minimum Redundancy (mRMR) [15]. This technique first as-
signs a value to each sensor by considering both its probability
of detection, and its correlation with the other sensors. It uses
an adaptive greedy selection where the value of each sensor
is computed at each step, and then the sensor with the highest
value is taken. While this does not guarantee an optimal subset,
experiments on a large variety of datasets have shown that
it works well in practice. Our evaluation shows that it works
significantly better than a baseline technique that does not take
correlation into account.

Contributions: Figure 1 pictorially describes the overall
approach with pointers to various sections of the paper.
Overall, we make two sets of contributions. First, we develop
a systematic approach for data-driven models of spectrum
sensors engaged in signal detection (Section III). The model
takes the sensor’s configuration and SNR as input and es-
timates detection performance and cost (we use energy to
model cost in this work). We precede this modeling approach
by highlighting limitations of traditional first-principles based
analytical modeling approaches (Section II) and demonstrate
improved model performance using the proposed data-driven
approach using actual spectrum sensor hardware. Second,
we develop a technique for the sensor selection and fusion
problem taking into account the fact that the spectrum sensors
are not conditionally independent (Section IV). The proposed
feature selection based technique is suitable for crowdsourcing
as it does not require information that is hard to obtain or
estimate. We show that the overall detection performance
improves significantly relative to baseline techniques.

An earlier version of this work was published in IEEE IN-
FOCOM 2018 [16]. In contrast to this work, here we propose
a more robust version of sensor selection, based on feature
selection borrowed from the machine learning literature. The
sensor selection algorithm in the previous version assumed that
sensors were placed in a way that they could be partitioned into
independent sets by clustering. Unlike the previous version,
our sensor selection technique does not make any assumption
about the distribution of the sensor locations. We have also
included a more extensive evaluation of the performance of
our selection and fusion algorithms in this version.

II. MODELING DETECTION PERFORMANCE

The spectrum sensor detects the absence or presence of an
intruding transmitter’s signal. The corresponding hypotheses
are denoted as H0 (absence) and H1 (presence) respectively.
Raw sensed samples from the sensor are fed to the correspond-
ing detection algorithm on board of the sensor that computes
a sensing metric. The sensing metric is compared against a
threshold (ST ) to output a binary decision. This is the local
decision of the sensor.

Performance Metrics: Given H1, the rate at which the
sensor detects the transmitter is known as the probability of
detection (PD ). Second, given H0, the rate at which the sensor
incorrectly flags the presence of a transmitter is known as
the probability of false alarm (PFA). Figure 2 demonstrates
the basic working principle. The sensing metric has two
different distributions under hypotheses H0 and H1. Under
H0, the distribution reflects noise. PD and PFA depends on the
selection of ST . Varying ST varies both PD and PFA between
0 and 1. This produces the receiver operating characteristics
(ROC) curve. Specifying PFA (common case) also determines
PD as per the ROC curve. However, the ROC curve itself
would look different if the distributions of the sensing metric
shown in Figure 2(a) change. This is possible when the signal
power from the transmitter changes (due to a different location,
e.g.). We further discuss details of the distribution later in this
section.
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Figure 1: Overview of the proposed technique. Performance models of individual spectrum sensors are created first
using a data-driven approach. Then sensor selection using a feature selection based approach. Finally individual sensor
decisions are fused together to get a global decision. The figure indicates the different steps along with the section
numbers where they are described.
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Figure 2: Working principle of a detector. ST denotes the
threshold of the sensing metric. Increasing ST reduces PD

but also reduces PFA as per the ROC curve.
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Figure 3: Unpredictable clock skew makes frequency offset
calculation harder, resulting in poorer signal detection
performance.

Challenges: Estimating an optimal value of ST is straight-
forward when the distributions of the sensing metric for H0

or H1 (Figure 2(a)) are known or can be accurately estimated.
Unfortunately, this is not the case in practice. The distribu-
tions depend on a variety of factors including the detection
algorithm, specifics of the sensor hardware, SNR or SINR at
the sensor location, number of sensed samples, FFT resolution
and so on. Common detection algorithms are energy-based,
waveform or feature-based, autocorrelation or cyclostationary-
based. Existing analytical techniques [17, 18, 19] can help
model such algorithms to estimate an optimal ST . How-
ever, such models typically result in significant estimation
errors [17, 18]. The reasons are as follows. First, many of these
models make idealistic assumptions about the distribution
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Figure 4: We demonstrate the effect of I/Q imbalance in
deteriorating the performance of simple waveform-based
detector algorithm used in detecting an ATSC pilot tone.

of the signal or noise or the noise associated with sensor
hardware. For example, [20] shows that the performance
of a sensor actually depends on both the signal parameters
and the amount of RF front-end non-linearities of the sensors.
Second, complex models do exist that take into account such
factors [20, 21], but it is seldom possible to parameterize them
correctly. This is due to the uncertainty in the hardware itself
or inaccessible components that make reliable measurements
impossible. Third, even when such measurements are possible
manual calibration of individual sensors does not scale well,
especially in the context of crowdsourcing.

We provide two sets of benchmarking experiments to high-
light the challenges.
Clock-skew: As an example, we study the clock skew as-
sociated with the local oscillator (LO) in the sensor. The
frequency set in LO tunes the sensor to the desired frequency.
However, the LO-frequency drifts giving rise to clock skew.
To understand the nature of such drifts in commodity sensor
hardware, we use two different spectrum sensors based on
RTL-SDR and USRPB210. These sensors are chosen due to
their low-power, small form factor nature [8]. They are both
USB-powered and could be driven by an embedded CPU board
or even a smartphone. Three test signals are used for detection.
The first two are constant frequency tones in the 915 MHz
band and the pilot tone of an ATSC signal (DTV band). In
both cases we observe a non-trivial frequency drift that varies
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widely across individual sensor instances. For the third, we use
an LTE downlink signal from a real network (AT&T) using
these sensors and recorded the frequency correction needed in
order to decode the synchronization signals. The results are
summarized in Figure 3(a). In most cases RTL-SDR suffers
from an appreciable clock skew which is less prevalent in more
expensive hardware like USRP. In Figure 3(b) we show the
impact of such clock-skew in detecting an ATSC signal. The
ATSC signal has a pilot tone located at an offset of 310 KHz
that is expected by our waveform based detector algorithm.
We create two variations of the algorithm that expects the
pilot tone (i) exactly at the 310 KHz offset and (ii) ≈100 KHz
surrounding the expected location that it scans. In a low SNR
scenario, scanning provides almost a 50% improvement in PD

compared to the detector that expects the pilot at a fixed offset
demonstrating the impact of the clock skew problem.
I/Q imbalance: Apart from clock skew, I/Q imbalance and
RF front-end non linearities are other prominent issues. I/Q
imbalance is introduced as a result of mismatch between the
in-phase (I) and quadrature (Q) signal paths of the RF receive
chain. For example, phase difference between the I and Q
components is not always exactly 90◦ which results in an
amplitude and phase offset in an I/Q sample. Since we do not
have direct control over the radio circuitry, we simulate I/Q
imbalance by adding amplitude and phase offsets to real I/Q
traces obtained for an ATSC signal using a RTL-SDR device.
For both cases, we use an offset drawn from a zero-mean
Gaussian with a standard deviation as shown in Figure 4. We
report the detection rate of the ATSC signal using a waveform-
based detector that identifies the ATSC pilot signal. As the I/Q
imbalance becomes more prominent, it becomes impossible to
detect the signal. Although I/Q imbalance can be addressed
directly in the hardware [21] we expect that crowdsourced
spectrum sensors may use inexpensive hardware unable to do
such corrections.

As mentioned earlier, while such problems can be accounted
for by applying models that ‘corrects’ for such errors, these
models are based on the ’first principles’ approach. These
models can only be applied after knowing specific sensor-
specific parameters (e.g., characteristics of frequency drift,
whether the algorithm scans, or nature of I/Q imbalance, etc).
However, this information may not be available in a crowd-
sourcing scenario given significant possible heterogeneity.

III. DATA-DRIVEN PERFORMANCE MODELING

To address the problem of scalable modeling of heteroge-
neous sensors, we borrow from the concept of data-driven
soft sensors utilized in industrial processes [10, 22]. Industrial
processes find it impossible to use first principles models for
their physical and chemical processes. These models are often
idealized (e.g., they assume steady state behavior) or require
parameters that are hard to obtain. Instead, data-driven soft
sensors models are gaining ground that take an alternative
blackbox approach where massive amount of collected data
is used to model and predict the industrial process behavior
in realistic conditions using statistical or machine learning
techniques (see, e.g., [10, 22]).

USRP Transmitter
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(a) ≈ 1000 sensing locations
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Figure 5: Spectrum sensor data collection

In the following we present our approach for the data-
driven analysis using an example dataset. We first describe
our dataset, quantify the errors associated with first-principles-
based analytical models and then present our data-driven
performance model of spectrum sensors.

A. Dataset

We collect spectrum sensor measurements in an outdoor
setting within the university campus. As shown in Figure 5(a),
we setup a USRP B210 based transmitter that transmits a
constant tone in the 915 MHz band and collect sensing data
(I/Q samples) using three RTL-SDR and two USRP B210
devices. We collect 1M samples at every location and our
sensing area covers approximately 1000 locations within a
190× 340 ft2 region (Figure 5(a)). The distribution (under H1)
of the received power is also shown in Figure 5(b). We bias
our data collection towards relatively lower SNR zones so as
to have more variations in detection performance. We also note
that detection is much easier if the received power is higher.
Thus we only consider cases where the intruder uses relatively
low power to avoid detection. Using the same set of sensors
we also collect a noise dataset by turning off the transmitter.
This data corresponds to the distribution for H0.

For every location we employ three different detection algo-
rithms (energy, feature and autocorrelation based) [8] both on
the signal and the noise dataset. We vary two key parameters
of the algorithm that directly influence PD –PFA as well
as energy cost in the sensor [8]: (i) N , number of sensed
samples and (ii) NFFT , resolution of the FFT. N and NFFT
are varied from 32 (25) to 4096 (212) by repeated doubling
with the constraint of N ≥ NFFT (36 configurations). We
introduce heterogeneity in the resolution of sensed samples by
changing the number of bits per sample. We produce additional
data sets of 14, 12, 10 and 6 bit samples by ignoring the least
significant bits from the collected 16 bit samples. Note that
this depends on the resolution of the ADC in the sensor and
heavily influences the dollar cost.

Across all locations, detection algorithms running with
different configurations (≈650K in all) we obtain the sensing
metrics for H0 and H1 respectively. For each location and
for every possible configuration at that location, we repeat the
detection experiment 1000 times by selecting a contiguous
chunk of N samples from the respective 1 M samples starting
at a random offset. This gives us 1000 instances of the sensing
metrics under the same configuration and we compute PD

and PFA for a given value of the sensing threshold, ST . By
varying ST , we obtain the ground truth ROC curves for all
such configurations across all locations.
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Figure 6: Estimation errors associated with the analytical models and their dependency on the sensor’s operating
environment or configurations. The median estimation error in PD can be as high as 25%. Higher errors are highly
associated to low SNR operating environments.

B. Limitations of Analytical Models

Before directly delving into the internals of the data driven
model, we first demonstrate the limitations of first-principles-
based analytical models using our dataset. Due to space
restriction we are not able to explain individual variations
of the analytical models we use but will explain the general
conclusions and trends. Figure 6(a) shows two histograms of
the sensing metric corresponding to H0 and H1 obtained by
using the energy-based detector algorithm (N = 2048, NFFT =
1024). We use the analytical model for energy-based detector
to estimate the distributions for H0 and H1 for the same
location. Figure 6(a) visually shows the difference between
ground truth and the estimated distributions. In Figure 6(b),
we present the estimation errors for different values of PFA.
Note that the median error can be as high as 25% in many
cases. We observe that the distribution of signal and noise are
close to each other in case of low SNR scenarios, leading to
higher probabilities of error. We also show (Figure 6(c)) the
correlation of such errors to the sensing configurations. Unlike
other factors, the number of ADC-bits does not show a very
high degree of correlation. This may be because we attempt
to detect a simple tone at a constant power in this study.

C. Data-Driven Performance Model

Given the relatively poor performance of parametric models,
we make use of ‘training data’ collected from spectrum sensors
to take a non-parametric data-driven approach. Note that this
data is already labeled as it has been obtained using our
own sensors and transmitters at specific defined configurations.
Essentially, the task of the model is to determine an optimal
sensing threshold, Sopt

T that maximizes PD for a given PFA.
For training the model we use feature vectors of the form V:
<Algorithm, N, NFFT, B, SNR, Ptarget

FA >, where P target
FA

is the allowable false alarm rate. Algorithm refers to the
signal detection algorithm the sensor runs that uses N, B-
bit samples and involves an NFFT-bin FFT. We use energy,
waveform and autocorrelation based detection algorithms. SNR
refers to the signal-to-noise ratio of the signal at the sensor’s
location. Every vector Vi is mapped to a corresponding Sopti

T

in the training examples. Note that we do not explicitly take
into account internal hardware details unlike the involved
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compared to the analytical models ANAPFA

for different values of PFA.
analytical models [23, 24]. We explore off-the-shelf machine
learning techniques using the scipy package [25] to learn
the estimator for Sopt

T . Out of several popular techniques we
tried out, the Support Vector Regressors (SVR) using RBF
kernel works best in our case. We have also explored deep-
learning methodologies [10] using convolutional neural net-
works (CNN); however, the amount of training data required
to get reasonable estimation performance is significant. This
makes CNN impractical in our case, and we adopt SVR for
creating the performance model.
Validation: We validate the performance of our data-driven
model in Figure 7. Given the configuration of the sensor
and the SNR it operates in, our model predicts the optimal
threshold Sopt

T that maximizes PD for a given PFA. We use

the sensor traces and the model predicted Ŝopt
T to compute

P̂D for a given PFA. The relative error of P̂D with respect
to PD is reported. We restrict our evaluation to sensor traces
that has moderate to low SNR values as under such scenarios
the models are error prone. We show estimation error in PD

for PFA equal to 0.1%, 1% and 10% respectively. The data-
driven models are indicated by MODPFA

in Figure 7. We
also present the estimation errors of the analytical models
(ANAPFA

) for the same set of data points (low/moderate
SNRs). In all cases after our model is moderately trained,
we reduce our estimation error by a significant margin with
respect to the analytical models. For instance, MOD10 out-
performs ANA10 by ≈ 12% for a training set of size 20%.
With more training samples the estimation error of our model
becomes negligible and we see a clear improvement over the
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analytical performance models.

IV. SENSOR SELECTION AND FUSION

The approach described in the previous section gives us the
power to estimate the detection performance of an individual
sensor deployed in the wild without explicitly calibrating it. In
this section we use such models to optimize the (network-wide
or global) detection rate. This is done by selecting an optimal
set of sensors (and their configurations such as number of ADC
bits, number of samples or FFT bins etc.) and fusing their local
decisions into a network-wide (global) decision. This needs a
simultaneous solution of sensor selection and sensor fusion
problems. As discussed in Section I, a wide body of literature
exists that propose mathematical techniques to fuse sensor
decisions to optimize certain detection performance metrics
(typically Bayes risk). In a widely used method proposed by
Chair and Varshney [26] that we will also use, an optimal
fusion rule is developed to minimize the sum of false alarm
and missed detection rates, but specifically for the case when
the sensors are conditionally independent.

As explained in Section I, the conditional independence
assumption does not hold for spectrum sensors. It is hard
to account for correlated sensor observations with existing
techniques due to complexity or unavailable parameters of the
crowdsourced spectrum sensors. We develop an alternative fea-
ture selection-based approach below that we will demonstrate
to perform well in practice.

A. Sensor Selection

To optimize performance under the constraint of a cost
budget, we need to select a set of sensors S that collec-
tively offers the best network-wide detection performance. Let
PD(S) denote the probability that the set of sensors S detects
an intruder. We denote the selection of a sensor by setting
the decision variable zi = 1, otherwise we set zi = 0. Let
Ci denote the cost of utilizing sensor Si. Our objective is to
maximize the probability of detection while keeping the cost
within a fixed budget B:

Maximize PD(S) subject to:
∑
Si∈S

ziCi ≤ B. (1)

Sensor Ranking: Solving this optimization is a known NP-
hard problem, since the sensors are correlated. This is mainly
because quantifying the effect of the correlations on per-
formance of the set of sensors is difficult. To solve this
optimization problem, we utilize a variant of a commonly used
feature selection technique from the machine learning litera-
ture, known as Maximum Relevance Minimum Redundancy
(mRMR) [15]. In this technique, the sensors are ranked based
on their contribution to PD(S). However, a measurement of
the contribution of a single sensor needs to take into account
two distinct factors:
• Relevance: A sensor is more relevant if its data is more

frequently used to detect an intruder. Based on the feature
selection literature, we measure the relevance of a sensor
by looking at the mutual information between the sensor

reading and the presence of intruder. Let Xi be a random
variable denoting the local decision given by sensor Si.
Also, let U be a random variable denoting if an intruder
is actually present at location j. Both Xi and U are binary
random variables. Then, the relevance of Si is measured by
the mutual information between Xi and U , I(Xi, U):

I(Xi, U) =
∑

xi∈{0,1}

∑
u∈{0,1}

P (Xi = xi, U = u) (2)

log
P (Xi = xi, U = u)

P (Xi = xi)P (U = u)
(3)

The value of I(Xi, U) is 1 if Xi and U are perfectly
correlated, and 0 if they are completely independent. The
probability terms can be estimated if we have sufficient data
representative of the cases of intruders being present as well
as absent. Thus, I(Xi, U) is a measure of how relevant
the sensor Si is in detecting the presence of the intruder
(denoted by U ).
• Redundancy: Assuming we already have selected a set

of sensors, we need a way to measure if adding a new
sensor adds any new information. A common approach of
measuring the redundancy of a sensor Sk with respect to
a subset T ⊆ S is to measure the amount of information
given by the new sensor about the output of the subset:

R(Sk,T) =
1

|T|
∑
Si∈T

I(Xi, Xk) (4)

If two sensors Si and Sk are spatially close to each other,
then the mutual information of these two sensors will be high.
Once again, it is possible to estimate the mutual information
by looking at the outputs of each individual sensors for both
H0 as well as H1. In this case, selecting both the sensors leads
to a high degree of redundancy. Thus, there is little value in
adding one such sensor to a subset containing the other.

To account for both relevance and redundancy, the actual
value (denoted by V (Sk,T)) of adding a sensor Sk is the
difference between the mutual information and redundancy.
Mathematically, we write this as:

V (Sk,T) = I(Xk, U)−R(Sk,T). (5)

Sensor selection schemes: For each sensor Si ∈ S and a
subset of the sensor set T ⊆ S, we now have a fixed value
V (Si,T). We also have a fixed cost Ci for each sensor Si ∈ S.
This is a feature selection problem with linear cost constraints,
which is NP-hard in general. We first solve it in the simple case
where the sensors are homogeneous in terms of configurations,
and follow this up with heterogeneous configurations.
Homogeneous Sensors (HOMS): We assume all sensors are
identical and have the same configuration. Hence their costs
are equal and we assume unit cost for every sensor, i.e., Ci =
1. In this case we first iterate across all the sensors and select
the sensor with the highest Vi. We add this sensor to the subset
T. In the next iteration, we recompute the values of Vi for all
the remaining sensors, and again select the maximum. In this
way, we keep selecting sensors until we reach the budget for
the number of sensors allowed.
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Figure 8: (a) PD for different configurations of the sensor under low and high SNR. (b) Sensor cost model (N is number
of samples, NFFT is number of FFT bins).

Heterogeneous Sensors (HETS): In this case the sensors
have heterogeneous configurations that are preconfigured for
every sensor and cannot be changed. Accordingly, the sensor’s
cost Ci is a function of its configuration as demonstrated in
Figure 8(b). Depending on the sensor’s configuration, Ci can
vary anywhere from the minimum cost value to 1. In this
case, we pick the sensor having the highest value-to-cost ratio
Vi/Ci, and add it to the subset T. We recompute the values
of Vi/Ci again, and keep picking the sensor with the highest
value and adding it to T until again we exceed the budget.
We summarize this algorithm in Algorithm 1.

Algorithm 1 HETS: Heterogeneous Sensor Selection.
1: Input: Value of sensors V , cost of sensors C, cost budget
B

2: Output: Optimal selection A

3: R = 0 /* R stores the cost of sensors selected so far. */
4: T← φ
5: while R < B do
6: j ← argmaxNi=1 Vi/Ci

7: T← T ∪ {Sj}
8: R← R+ Cj

9: Vj ← 0
10: end while
11: return T

Reconfigurable Sensors (RES): Here, the sensor can adopt a
specific configuration from a pool of available configurations.
Here the task is not only to select the sensors but also
determine the configuration of the sensor that it should adopt.
We again compute the value-to-cost ratios Vi/Ci for each
configuration, and select the one that provides the highest.
However, in the next iteration, we repeat the procedure after
excluding the sensor that has already been selected in the
previous step. We repeat this procedure until no sensor can
be selected within the budgeted cost.

Analysis of our Technique: We note that our technique is a
heuristic, i.e. it does not provide any guarantee of optimal or
approximate performance. To understand this, we consider a

case where there are three sensors S1, S2 and S3 available
for selection, with values V1, V2, V3 and costs C1, C2 and
C3, respectively. We also have a budget of 2. Let the sensors
S1 and S2 as well as S2 and S3 be strongly correlated with
each other. Assume that V2 is slightly greater than V1 and V3.
In this case, it is obvious that selecting S1 and S3 is better.
However, our algorithm first chooses S2 and then any of S1

or S3. Since both S1 and S3 are strongly correlated with S2,
this can give a solution that is arbitrarily bad. Note that this
can be extended to any number of sensors, in the special case
where there are groups of 3 sensors with each of them having
the same configuration. Thus, in the worst case, our algorithm
can give a solution that is arbitrarily bad. However, we show
in our evaluation that our heuristic performs well in a large
number of different cases.

Time Complexity: To understand the time complexity of our
technique, we note that selecting a single sensor requires iter-
ating over all the sensors to compute each sensor’s relevance.
This requires O(|S|) time. It also requires iterating over all
the selected sensors. Since the number of selected sensors is
always less than the budget B, this requires B time. Thus, a
single selection requires O(|S| × B) time. This needs to run
B times to fill the budget, and so the total time complexity of
our technique is O(|S| ×B2).

B. Sensor Fusion

We now have a selection of sensors and their configurations.
We use the Chair-Varshney optimal sensor fusion rule [26] that
fuses the local decisions of the individual sensors into a global
(fused) decision to minimize the error rate. However, Chair-
Varshney sensor fusion rule assumes that the sensor decisions
are conditionally independent. This is not true in practice in
our case, since the intruder can arrive at any location within
the area, which affects the sensor local decisions.

To resolve this limitation, we apply this fusion rule repeat-
edly for each possible location of the intruder. We note that for
a particular location of the intruder, the sensor local decisions
are conditionally independent. Formally, assume that Ui is the
local decision (1 or 0) of the sensor Si, if the intruder signal
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is detected or not detected (respectively) by this sensor given
the intruder is at location j. Using [26], we compute the fused
decision DL=j of the sensors given this location of the intruder
as:

DL=j =
∑

PDi,L=j>PFAi

[Ui log
PDi,L=j

PFAi

+ (1− Ui) log
1− PDi,L=j

1− PFAi
] (6)

The summation above is for all selected sensors. PDi,L=j

is the probability of detection of sensor Si for an intruder
at location j. UL=j > 0 indicates presence of the intruder
(at location j), otherwise it is considered absent. Note that
we only consider sensors with probability of detection higher
than the probability of false alarm from a particular location l,
since only those sensors are close enough to give meaningful
information. To estimate the presence of an intruder anywhere,
we first compute the values of DL=j for all possible locations
j. We conclude that there is an intruder anywhere only if at
least one of these DL=j’s is positive. Otherwise, we conclude
that no intruder is present.

V. EVALUATION

We simulate a 1000 m×1000 m grid where we randomly
deploy 100 spectrum sensors. The sensors can choose among
36 different configurations. Each configuration corresponds to
the tuple (N, NFFT), N being the number of I/Q samples
and NFFT, the resolution of the FFT in the sensor’s detection
algorithm. N, NFFT ∈ {25, 26, · · · , 212}, where N ≥ NFFT.
For each sensor, we set PFA = 1% (or 0.01) and obtain
the PD from our data-driven performance model (MOD10).
The sensors have a cost model as mentioned in Figure 8.
Next, we simulate an intruder in the grid. The intruder is
represented by a wireless transmitter with a transmit power
of 10 dB. We use the log-normal model to compute RSS
at all the sensor locations. We make the intruder’s prior
map realistic to account for different factors such as terrain
information or proximity to residential or navigable areas.
We create the prior map directly from a snapshot of Google
map’s satellite imagery data. To remove intricate details (e.g.,
buildings, texture) in the image, we apply Gaussian blur, a well
known image filtering technique. Next we resize the image to
a dimension of 100×100 to emulate our grid. We make the
prior probability of the transmitter to be present in a certain
cell < i, j > proportional to the pixel intensity at < i, j >.
Figure 9 shows our prior map. For all simulations we sample
the intruder’s location 10 K times from the prior map that
we use to obtain weights for our sensor selection algorithms.
Every time the intruder appears, the selected sensors attempt to
determine its presence with their respective values of PD. The
fused decision is compared to the ground truth. We compute
the detection rate for the given instance of selected sensor by
simulating the intruder 1000 times. We also compute the false
alarm rate by simulating another 1000 cases where no intruder
is present.
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Figure 9: Transmitter prior map of the area obtained from
a satellite image.
A. Performance of Sensor Selection Algorithm

We compare the performance of our sensor selection al-
gorithms with that of two baseline algorithms. As baseline,
we first run a random selection algorithm where we pick the
sensors randomly with uniform probability. We then run a
greedy algorithm where we pick the best sensors (the ones with
highest relevance) without accounting for their correlation.
We refer this algorithm as mutual information based Greedy
(MIG). When the sensors are homogeneous, MIG selects the
sensors for which the prior probabilities are the highest. For
other cases, MIG selects sensors in decreasing order of their
Vi/Ci ratios. Finally, we also run the sensor selection algo-
rithm proposed in our earlier work [16], which first segments
the entire grid into clusters, and then uses ranking of sensors
across each cluster. We refer this technique as Clustering and
Ranking (CAR).

Observation: Figure 10 shows the performance in terms
of PD and PFA obtained by the sensors selected by our
algorithms compared to baseline heuristics across different
cost budgets. We show both the mean performance and the
standard deviation at each of the data points. For HOMS,
we consider the number of sensors as the cost, i.e., Ci = 1.
However for HETS and RES, the cost Ci ∈ [mincost, 1]. We
note that our algorithms perform significantly better compared
to MIG, CAR as well as Random schemes, especially at
medium values of the budget. For all cases, till a budget of
1, our algorithms perform similar to the MIG scheme. This
is because both of them select sensors only from the cluster
with high prior probability. When we increase the budget
above 2, the MIG method keeps selecting from the same
cluster, since it does not consider the effect of correlation.
For instance, at a budget of 5, 3 and 4, HOMS, HETS and
RES outperform the MIG scheme by 91%, 10% and 15%,
respectively. Note that our algorithm also performs much
better than the random selection in each of the cases. The
lower gain in the case of HETS can be explained by observing
that a larger number of lower cost sensors provides higher
probability of detection than a fewer number of expensive
sensors. For less expensive sensor configurations, the amount
of correlation is also lower, since their individual PD’s fall
more sharply with a reduction in power. Thus, our algorithms,
because of removal of redundancy, improves performance the
most when the budget constraint requires intelligent selection
of sensors.
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(c) PD of Reconfigurable Sensors (RES)
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(d) PFA of Homogeneous Sensors (HOMS)
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(e) PFA of Heterogeneous Sensors (HETS)
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Figure 10: Performance comparison of the three proposed schemes with MIG, CAR and Random baseline heuristics.
For each data point, we show the mean value and the standard deviation. We do not show the standard deviation of
the Random scheme for clarity since it has a higher value.

We also note that the increase in the values of PD also
leads to increase in PFA. However, this increase in the value
of PFA is relatively small, as it is always less than 0.1 in case
of HOMS and RES, and less than 0.2 in case of HETS. Our
algorithm also provides either lower or equal values of PFA

compared to each of the baseline techniques.

B. Performance of Our Fusion Rule

We compare the performance of the Chair Varshney fusion
rule with a baseline technique. To compare, we run the same
simulation and selection process as HETS, but run both Chair
Varshney fusion rule and a baseline technique. Our baseline
technique concludes that there is an intruder if a total of k
out of |S| sensors give output 1, where the best value of k is
chosen by simulation.

Observation: Figure 11 shows the probability of detection
using Chair Varshney and the baseline technique. We find
that Chair Varshney performs better in all the cases, with
the performance rising with increase in number of sensors.
Thus, the Chair Varshney rule is 91.2% accurate when just
8 sensors are present, whereas using k out of N sensors just
gives 65.8% accuracy. This is because Chair Varshney is able
to consider the individual performance of each of the sensors,
whereas the baseline technique always considers all sensors as
equivalent. The contributions of the individual sensors need to
be considered for good detection performance. This further
confirms our claim that the Chair-Varshney rule is optimal.
This also shows that having information about probability of
detection of individual sensors is important for accurate sensor
fusion. Thus, our data-driven technique of evaluating sensors
behavior is necessary to improve the accuracy of detection.
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Figure 11: Performance of Chair-Varshney Fusion rule
(our method) compared to a baseline k out of N rule.

VI. RELATED WORK

Shared spectrum architectures need to enforce suitable poli-
cies to control spectrum access among secondaries [27, 28].
On the other hand, with the advent of cheaper radio hardware
the licensed spectrum is prone to unauthorized use [29].
This makes the problem of spectrum patrolling important.
Dutta and Chiang [2] introduce the concept of crowdsourced
enforcement of spectrum policies. Vaze and Murthy [30] also
localize transmitters using binary sensors similar to our study.
However, unlike our work, they do not consider the effect
of correlation among sensors and do not consider the cost of
utilizing sensors. Bhattacharya et al. [31] propose reducing the
cost of spectrum sensing by using FPGA-based sensors.
Performance of low cost spectrum sensors: The authors
in [2] assume complete knowledge about the performance of
crowdsourced sensors which is not practical. [2] also assumes
the sensors to be homogeneous which is generally not true
in a crowdsourced environment. Spectrum monitoring using
cheap crowdsourced sensors is not new [4, 9, 6] but they do
not provide any insights regarding performance or reliability
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of sensing. We also show that analytical techniques [32] that
model the sensor’s detection performance are often simplistic
and error prone. [21, 23] build upon the analytical techniques
providing corrections for hardware related aspects like I/Q im-
balance, RF front-end non-linearities etc. Inspired by [22, 10],
we use a data-driven approach to create performance models
of heterogeneous spectrum sensors.
Sensor Selection and Fusion: A good amount of literature ex-
ists that study the problem of selecting sensors and combining
the decisions of multiple sensors. Joshi and Boyd [33] show
a method of selecting sensors using convex optimization, and
empirically show that their results are usually close to optimal.
Shamaiah et al. [34] propose a greedy selection of sensors that
is close to optimal. Unlike our work, these studies consider
data that follow normal distribution. To select sensors in the
presence of intruders, we utilize a feature selection technique
commonly used in the machine learning literature. This tech-
nique, known as maximum relevance minimum redundancy
(MRMR) [15], is widely used to select relevant features when
the features are correlated.

Combining the data of multiple sensors is a well-known
problem in sensor networks. We utilize the rule provided by
Chair and Varshney [26] which optimizes the overall perfor-
mance when the individual sensor outputs are conditionally
independent of one another. Different techniques of fusing
multiple sensor decisions are presented in [35]. Some studies
have also looked at the problem of distributed spectrum mon-
itoring. Ghasemi and Sousa [3] propose using collaborative
sensing across multiple sensors to better monitor spectrum.
Dasari et al. [36] showed that detection of intermittent trans-
mitters can be significantly improved by fusing the decisions
of multiple sensors. Our work builds upon these studies to
focus on detecting the presence of spectrum intruders.

VII. CONCLUSION

In this work we address the problem of spectrum patrolling
using crowsourced heterogeneous sensors. To the best of our
knowledge this is the first work that models the performance
of a spectrum sensor in a data-driven way. Our model provides
significant improvement over state-of-the-art ‘whitebox’ mod-
els. Next we address the problem of sensor selection and fusion
of heterogeneous sensors deployed over a region of interest
to improve intrusion detection performance within a cost
budget. We investigate different scenarios of homogeneous,
heterogeneous and reconfigurable sensors. Our sensor selec-
tion algorithms perform significantly better than reasonable
baseline heuristics. We highlight challenges of the patrolling
problem in a cost-effective fashion using crowdsourced sensors
and develop mechanisms to address them.
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