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Abstract—We propose a novel robust estimation algorithm—the generalized projection-based M-estimator (gpbM), which does not

require the user to specify any scale parameters. The algorithm is general and can handle heteroscedastic data with multiple linear

constraints for single and multicarrier problems. The gpbM has three distinct stages—scale estimation, robust model estimation, and

inlier/outlier dichotomy. In contrast, in its predecessor pbM, each model hypotheses was associated with a different scale estimate. For

data containing multiple inlier structures with generally different noise covariances, the estimator iteratively determines one structure at

a time. The model estimation can be further optimized by using Grassmann manifold theory. We present several homoscedastic and

heteroscedastic synthetic and real-world computer vision problems with single and multiple carriers.

Index Terms—Generalized projection-based M-estimator, robust estimation, heteroscedasticity, RANSAC

Ç

1 INTRODUCTION

REGRESSION algorithms estimate a parameter vector given
a dataset and a functional relation between the data and

the parameters. Data points satisfying the relation are
known as inliers, while the ones not satisfying it are called
outliers. Outliers interfere with the regression and lead to
incorrect results unless they are appropriately accounted
for. Robust algorithms estimate model parameters in the
presence of outliers without significant loss of accuracy.

In vision applications, outliers almost always occur and
any system which aims to solve even simple visual tasks
must address this problem. The most widely used robust
algorithm in computer vision is Random Sample Consensus
(RANSAC) [12]. The popularity of the original RANSAC
algorithm is due to its ease of implementation. However,
RANSAC suffers from a major drawback, namely, sensitiv-
ity to scale. Scale is the measure of additive noise which
corrupts the inliers. RANSAC requires a user-specified
estimate of the scale and the performance of RANSAC is
sensitive to it. Using a low value of the scale leads to
rejecting valid inlier data, while a large value lets the
outliers affect the parameter estimate.

Computer vision problems have evolved into estimating
multiple inlier structures in the presence of a large number
of outliers. For an inlier structure, since the scale can be
different in each dimension, it is very hard (sometimes
impossible) for the user to find a good estimate. For
example, in video sequences, the scale of the inlier noise
could change from one frame to another, based on how fast
the camera is moving.

RANSAC has been applied to many computer vision
problems. See [17] for references. The various enhance-
ments of RANSAC, like MLESAC [33], LO-RANSAC [7],
PROSAC [6], and QDEGSAC [13], proposed changes to
either the cost function, the sampling method, or detecting
the degeneracies in data. A comprehensive review of all
these algorithms, along with a new method for real-time
implementation of RANSAC, is given in [24]. Cov-
RANSAC [25] proposed a modification to RANSAC by
explicitly incorporating the uncertainty of the estimation
procedure, but it still required a threshold on the trace of
the covariance matrix.

Estimating the scale of the inlier noise is an important
problem for any robust regression algorithm. Among the
first papers addressing this issue were the robust Kth
Ordered Scale Estimator (KOSE), Adaptive Least Kth order
Squares (ALKS) [20], and Weighted Median Absolute
Deviation (WMAD) [10] methods. All the above and
different versions of the projection-based M-estimator
(pbM) [28], [29] (explained below) used variants of the
Median Absolute Deviation (MAD) scale estimate. The
MAD-based scale estimation could fail if the inliers contain
noise from an asymmetric distribution or comprise less than
50 percent of the data points. This is often the case when
several inlier structures are present.

The Modified Selective Statistical Estimator (MSSE) [1],
the Two-Step Scale Estimator (TSSE) [39] and the kernel
consensus-based robust estimator [38] also return a scale
estimate. The MSSE used generalization of the Least Median
of Squares and the user had to specify an initial estimate of
the minimum acceptable population of every inlier struc-
ture. The TSSE is valid only for data with symmetric inlier
distribution around the mode and used mean shift to find an
inlier-outlier dichotomy followed by estimating the scale.

The main disadvantage of all these methods is that they
estimate the scale of noise independently in each dimension
of the null space. This may lead to gross inaccuracies in the
scale estimate, especially when data contains multiple inlier
structures. Fig. 1 illustrates this problem using a multiple
line fitting example in 3D. The four inlier structures lie
along four parallel lines, each having a different scale of
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noise along the two axes of the null space, �. Here, the null
space is the blue plane shown in Fig. 1a. It is impossible to
estimate the scale correctly if the estimation is done along
each axis of � independently.

Recently, a few fully automatic methods have also been
proposed. The Ordered Residual Kernel (ORK)-based
method [3], [4] was introduced where the scale estimate is
not computed explicitly, but the method suffers from poor
computational efficiency and sensitivity to unstructured
(gross) outliers. The Stable Random Sample Consensus
(StaRSaC), introduced in [5], uses RANSAC to estimate a set
of model parameters by varying the threshold in a
prespecified range and then selects the model parameters
corresponding to the smallest variance. The rather compli-
cated REsidual CONsensus (RECON) approach of [23] first
finds a given number of mutually consistent models using
elemental subsets and then refines the model estimate using
PROSAC [6] type sampling on the inliers. Both StaRSaC and
RECON work only on data containing one inlier structure.

The projection-based M-estimator was described in [28]
and [29]. It estimatesm� k dimensional subspaces in IRm by
maximizing the M-score over randomly chosen subspace
hypotheses. In general, the elements of a carrier vector x are
nonlinear monomials of the elements of vector of variables y.
See Section 2 for details. Given the carrier vectors x, the
M-score relates to the M-estimation (see (13)) and solves a
linearized system with unknowns � 2 IRm�k, representing
the k-dimensional null space, and ���� 2 IRk, the intercept.
Due to this nonlinearity, the estimation problem becomes
heteroscedastic, i.e., each carrier vector can have a different
noise covariance matrix. The noise in variables y is usually
homoscedastic, i.e., the covariances of the noisy measure-
ments are equal, but heteroscedastic variables can also be
easily handled. The covariances of the carriers are com-
puted from those of the variables through error propagation
[21] (see Section 2 for details).

For pbM, the computation of the M-score depends on the
k� k diagonal scale matrix S� whose diagonal entries were
computed for p ¼ 1; . . . ; k using

S�ðp; pÞ ¼ n�1=5 med
j
jzpj �med

i
zpi j; i; j ¼ 1; . . . ; n; ð1Þ

where zpi ¼ ����>p xi is the projection of the ith carrier vector, xi
on to the pth column of �. One can see that pbM uses a
variant of MAD. Since S� depends on a particular �, it does

not necessarily correspond to the actual scale of the inlier
noise. The independence of the M-score over the
�-dependent scale is only partially achieved by normalizing
each M-score with the determinant of S� [29]. Often, mean
shift cannot converge to the correct mode using an incorrect
scale estimate, especially when data contains asymmetric
noise and multiple inlier structures. Using a �-dependent
scale reduces the discrimination between correct and
incorrect hypotheses.

In addition to lacking a stable method for automatic scale
estimation, the pbM algorithm [29], [28] cannot handle
multicarrier problems, i.e., when more than one carrier vector
arises from a single measurement. For example, in planar
homography estimation and camera calibration, a single
point correspondence yields two carrier vectors—one each
corresponding to the x and y coordinates of the images.

Let us see the following two-carrier synthetic example. In

Fig. 2a, the two surfaces in 3D correspond to the paraboloid

4x2 þ 4y2 � z ¼ 0 and the plane 4xþ 4y� z ¼ 0. It can be

verified that their intersection is always an ellipse (shown in

red). The vector of variables is given by ½x y z�> and the two

carrier vectors are ½x2 y2 z�> and ½x y z�>. Since we have a

multicarrier problem, the vector ���� ¼ 1ffiffiffiffi
33
p ½ 4 4 �1 �> is the

common null space for both surfaces and the corresponding

intercept � ¼ 0. Given a point on the ellipse such that the two

carrier vectors are linearly independent, the equation of the

ellipse in the plane can be obtained from the estimated ����.
Fig. 2b shows 100 noisy inlier points along the ellipse

obtained by independently corrupting x; y; z coordinates
with zero-mean Gaussian noise and standard deviation
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Fig. 1. Scale estimation in multiple dimensions. (a) Data containing multiple inlier structures and outliers. (b) Scale of noise estimated independently
in each dimension of the 2D null space, � (incorrect). (c) Scale estimated simultaneously in both the dimensions (correct).

Fig. 2. A synthetic two-carrier problem. (a) Intersection of a paraboloid
and a plane in 3D gives an ellipse. (b) The noisy inlier points along
the ellipse.



� ¼ 0:0707 ¼
ffiffiffiffiffiffiffiffiffiffiffi
0:005
p

. The scale of the inlier noise of the two
carriers, using the true ����, can be computed either homo-
scedastically or heteroscedastically. Since here the data
contains only inliers, the estimates of the scales are computed
as the standard deviations of their residuals after projecting
them to the null space, ����. In the homoscedastic case, the scale
estimates are directly computed as bs1hom ¼ 0:1084 andbs2hom ¼ 0:0770. In the heteroscedastic case, the scale of the
residuals of the paraboloid is computed after first normal-
izing them with their point-dependent covariances. See
Section 2 for computational details. The scale estimates in
this case are bs1het ¼ 0:0772 and bs2het ¼ 0:0770, which are
comparable for the two carriers.

We will present the generalized projection-based
M-estimator (gpbM) algorithm for estimating multiple,
linearized inlier structures in the presence of unstructured
outliers. In general, the carriers are heteroscedastic. The
algorithm has three different steps. An estimate of the scale
and fraction of points belonging to an inlier structure is
computed automatically in the beginning. The model
estimation is then performed very efficiently by using just
the inliers returned by the scale estimate. Finally, the inlier/
outlier dichotomy is performed using the estimated scale
and model parameters. Being completely user independent,
this method has obvious advantages over RANSAC-like
algorithms and pbM [29].

The contributions of our work are summarized below.

. We propose an automatic method for estimating the
scale of inlier noise in k dimensions simultaneously.

. We develop the most general form of pbM which
can handle heteroscedastic data for single or multi-
ple constraints, arising from both single and multi-
carrier problems.

. We formulate the model refinement step as an
optimization problem over Grassmann manifolds,
which is also described in detail in [22].

. We introduce a new method for inlier/outlier
dichotomy, also taking into account the discrimina-
tion between intersecting inlier structures.

In Section 2, we introduce the robust subspace estima-
tion problem in k dimensions. In Section 3, we describe in
detail the generalized projection-based M-estimator. In
Section 4, we present challenging synthetic and real-world
applications. Finally, in Section 5, we conclude and provide
some interesting directions for extending the presented
work into the future.

2 ROBUST SUBSPACE ESTIMATION

Solving an estimation problem requires determining a set of
parameters from noisy image measurements using con-
straints. Given n1 true values of the measurements (inliers)
yio, the vector of constraints generally represents a non-
linear relationship between yio and ideal values of the
parameters, ����:

� yio; ����ð Þ ¼ 0k; i ¼ 1; . . . ; n1; �ð�Þ 2 IRk: ð2Þ

In computer vision problems, this nonlinear relationship (2)
can be linearized (upto the first order) into a set of k linearly
independent constraints parametrized by the matrix � 2
IRm�k and the intercept vector ���� 2 IRk:

�
�
x
½c�
io ;�; ����

�
¼ �>x

½c�
io � ���� ¼ 0k; i ¼ 1; . . . ; n1: ð3Þ

The set of true carrier vectors is x
½c�
io 2 IRm. In a multi-

carrier problem, a variable y provides � > 1 carrier vectors
x½c�; c ¼ 1; . . . ; �. The m� k ðk < mÞ orthonormal matrix �

represents the k constraints satisfied by the inliers. The
inliers have m� k degrees of freedom and thus lie in a
subspace of dimension m� k. Geometrically, � is the
basis of the k-dimensional null space of the carrier data.
The multiplicative ambiguity is resolved by requiring
�>� ¼ Ik�k. Due to this property, the m� k matrix � can
also be represented as a point on a Grassmann manifold
of appropriate dimensions.

Given n ð> n1Þ noisy measurements yi (inliers and

outliers) and constraints, we can compute all the carrier

vectors x
½c�
i , i ¼ 1; . . . ; n, c ¼ 1; . . . ; �. The noise in the carriers

corresponding to the inliers is assumed to be additive

x
½c�
i ¼ x

½c�
io þ �x

½c�
i , �x

½c�
i � GIð0; �2C

x
½c�
i

Þ. The number of

inliers n1 is unknown. The problem of robust linear subspace

estimation is to find the estimates of �; ����, and n1 such that

�>x
½c�
i � ���� � 0k; i ¼ 1; . . . ; n1; c ¼ 1; . . . ; �: ð4Þ

The corrected carriers bx½c�i and the variables can then be
recovered easily. The points x

½c�
i ,i ¼ n1 þ 1; . . . ; n, are out-

liers and no assumptions are made about their distribution.
Since there could be several inlier structures, relative to one
inlier structure the outliers can either belong to another
inlier structure (structured outliers) or can be completely
unstructured.

We present two examples for computing carrier covar-
iances heteroscedastically, one for a single and the other for
a multicarrier problem. More examples, together with
detailed experiments will be presented in Section 4.

In fundamental matrix estimation, � ¼ 1. Traditionally,
the vector of measured variables is given by y ¼
½x1 y1 x2 y2�> which lies in IR4. Here, ðxi; yiÞ, i ¼ 1; 2,
are the coordinates of the corresponding points in the two
images. The 3� 3 matrix F satisfies the 1D constraint in
the homogeneous coordinates (for nonideal points only
[17, p. 279]):

½x2 y2 1 � F ½x1 y1 1 �> ¼ 0: ð5Þ

The carrier vector is given by

x ¼ ½x1 y1 x2 y2 x1x2 x1y2 y1x2 y1y2�>;

which lies in IR8, implying that �� 2 IR8. The constraint
����>���� ¼ 1 eliminates the multiplicative ambiguity in (5).
Assuming the variables y have covariance �2I4�4, the first
order approximation of the covariance of x is computed
from the Jacobian using error propagation [21]:

Jxjy ¼

1 0 0 0 x2 y2 0 0
0 1 0 0 0 0 x2 y2

0 0 1 0 x1 0 y1 0
0 0 0 1 0 x1 0 y1

2
664

3
775 ¼ ½I4�4 JðyÞ�; ð6Þ

Cx ¼ �2J>xjyI4�4Jxjy ¼ �2 I4�4 JðyÞ
JðyÞ> JðyÞ>JðyÞ

� �
: ð7Þ
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Next, consider the problem depicted in Fig. 2. Given the

vector of variables y ¼ ½x y z�>, the � ¼ 2 carrier vectors are

given by

x½1� ¼ ½x2 y2 z�> x½2� ¼ ½x y z�>; ð8Þ

which lie in IR3, implying that ���� 2 IR3. Assuming that the

variables y have covariance �2I3�3, the first order approx-

imations of the covariances of x½1� and x½2� are computed as

Jx½1� jy ¼
2x 0 0
0 2y 0
0 0 1

2
4

3
5; Jx½2� jy ¼ I3�3; ð9Þ

Cx½1� ¼ �2J>x½1� jyI3�3Jx½1� jy ¼ �2

4x2 0 0

0 4y2 0

0 0 1

2
64

3
75;

Cx½2� ¼ �2J>x½2� jyI3�3Jx½2� jy ¼ �2I3�3:

ð10Þ

In case of a multicarrier problem, for a given model

hypothesis ½�; �����, the projections of points x
½c�
i , i ¼ 1; . . . ; n

and c ¼ 1; . . . ; �, onto � are given by z
½c�
i ¼ �>x

½c�
i . A

point yi is considered an inlier if all the corresponding carriers

x
½c�
i , c ¼ 1; . . . ; �, satisfy that the Mahalanobis distances

d
½c�
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�>x

½c�
i � ����

�>�
H
½c�
i

��1�
�>x

½c�
i � ����

�q
� 0; ð11Þ

where �>x
½c�
i � ���� are deviations of the points x

½c�
i from the

model hypothesis and H
½c�
i ¼ �>C

½c�
i � are the covariance

matrices of the projections z
½c�
i . We use C

½c�
i , H

½c�
i instead of

C
x
½c�
i

, H
x
½c�
i

for convenience. Thus, for the point yi to be an

inlier, it is sufficient to check if

d
½ec�
i � 0 where ec ¼ arg max

c¼1;...;�
d
½c�
i : ð12Þ

The carrier vector corresponding to ec and its projection onto
� are represented by exi and ezi and their respective
covariance matrices by eCi and eHi. Most robust estimation
algorithms, including RANSAC, use the euclidean distance
instead of the Mahalanobis metric. This is similar to
homoscedastic estimation, and in a lot of cases could lead
to serious inaccuracies in distinguishing between the inliers
and the outliers.

We assume that data is nondegenerate. Degenerate data
can first be processed similar to QDEGSAC [13], followed
by the generalized projection-based M-estimation. Given all
the k constraints, the m-dimensional carrier vectors can be
easily computed. No other prior knowledge about the inlier
structures is used.

3 GENERALIZED PROJECTION-BASED

M-ESTIMATOR

We define the heteroscedastic objective function as

½ b�; b����� ¼ arg max
�;����

1

n

Xn
i¼1

Kðððezi � �Þ> eBi
�1ðezi � �ÞÞ12Þffiffiffiffiffiffiffiffiffiffiffiffiffi

det eBi

q ; ð13Þ

where ezi ¼ z
½ec�
i ¼ �>exi is the projection of x

½ec�
i on to �. Note

that for each point i, the choice of ec is dependent on a

particular model hypothesis ½�; ����� and is determined using

(12). Assuming that the data is nondegenerate, the

bandwidth matrix eBi ¼ S> eHiS is positive definite. The k�
k diagonal scale matrix S is computed beforehand (see

Section 3.1) and corresponds to the scale of inlier noise in

k dimensions. The division by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det eBi

q
ensures that points

with larger covariances contribute less than the ones with

smaller covariances. Note that in [29], since the hypothesis-

dependent scale matrix S� is the same for all the points, it

cannot be used for general heteroscedastic problems.
The gpbM algorithm derives its name due the relation of

the kernel function, KðuÞ to the M-estimator loss function,
�ðuÞ which is given by KðuÞ ¼ 1� �ðuÞ. The function �ðuÞ is
a redescending M-estimator and is nonnegative, symmetric,
and nondecreasing with uj j. It has a unique minimum of
�ð0Þ ¼ 0 and a maximum of one for uj j > 1. We will use
Epanechnikov or Gaussian kernels in our experiments.

The gpbM algorithm falls in the category of elemental
subset-based estimation methods. Each inlier structure is

estimated in three steps. In the first step, we estimate the k� k
diagonal scale matrix S, heteroscedastically. In the second

step, the parameter pair ½�; ����� is estimated using the scale
computed in the first step. We show that maximizing the
objective function of (13) is equivalent to maximizing a

heteroscedastic kernel density function over the projections,ezi. In the third step, we perform inlier/outlier dichotomy.

After all the inlier structures are recovered iteratively, a final
reclassification of the points using the discrimination
between the estimated models can also be performed.

3.1 Step One: Heteroscedastic Scale Estimation

For detecting multiple inlier structures, if the scale of inlier
noise is overestimated, two or more inlier structures might
get merged into one. On the other hand, if the scale is
underestimated, multiple models might get fitted within
one inlier structure. The inliers are always densely packed
around the regression surface and, to estimate the scale, we
capture the difference in density between the inliers and
outliers. It is impossible to estimate the scale if both inliers
and ouliers have similar densities.

As opposed to [27], the scale is estimated heteroscedas-
tically. A homoscedastic scale estimate could lead to gross
errors, especially in multicarrier problems. The scale of an
inlier structure is computed by first estimating the approx-
imate fraction of data points belonging to it. We generate
M elemental subset-based model hypotheses ½�; �����. The
value of M is specific to the problem and will be given in
Section 4. For each hypothesis, we vary the value of fraction
between ð0; 1� in Q steps, such that for q ¼ 1; . . . ; Q, the
fraction 	q ¼ q=Q ¼ nq=n. In all our experiments, the value
of Q was conservatively set to 40.

For a given q, with a slight abuse of the notation, let

volqð�; ����Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnq
l¼1

ezl � ����ð Þ> eH�1
l ezl � ����ð Þ

vuut ; ð14Þ
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be the volume around the intercept ���� containing nq points.
Since we incorporate the Mahalanobis distance into the
volume (14), our method is more robust to inlier noise than
[27]. The corresponding density for the fraction 	q is
proportional to the inverse of the volume and is given by

 qð�; ����Þ ¼ nq
volqð�; ����Þ þ 
 ; ð15Þ

where a small constant 
 is added to suppress extremely
high values of densities obtained for small fractions.
Usually, the value of 
 is set 0.01 or 0.1.

For each of the M hypotheses, we are only interested in
the maximum (peak) density, maxq½ qð�; ����Þ�. Let Jq be the
number of times a peak occurs at 	q fraction. It is clear that
the sum

PQ
q¼1 Jq ¼M. For every q, let  qsub be the sum of 	qJq

peak density values. For example, for q ¼ 4 ð	q ¼ 0:1Þ, only
the sum of highest 0:1J4 peaks is considered. This way, the
estimation becomes more robust for data containing multi-
ple inlier structures, especially when various inlier struc-
tures have very different number of points. Our estimate of
the fraction of the inlier points is determined as 	bq where

bq ¼ arg max
q

 qsub: ð16Þ

Consider the two inlier structures in Fig. 3a lying along
two different lines in 2D. The blue and red structures
contain 150 points and 350 points, respectively, and 500
unstructured outliers were also added. The x and y
coordinates of the two structures were independently
corrupted with zero-mean Gaussian noise with standard
deviation of 0.1 for the red and 0.05 for the blue structure.

The histogram in Fig. 3c shows that more peaks occur at
	q ¼ 0:15 than at 	q ¼ 0:35. For a given q, some peaks could
correspond to incorrect hypotheses and their number
depends both on the number of inlier structures and the
fraction of each inlier structure. The smaller inlier fraction
ð	q ¼ 0:15Þ has more peaks since more incorrect hypotheses
can produce peaks at these fractions. Also, some hypotheses
taken from the larger inlier structure can correspond to
peaks at 	q ¼ 0:15. For each q, summing over just 	qJq peaks
ensures that only the most reliable peaks are considered.

Fig. 3d plots  qsub for each fraction. The factor 	q also
biases the estimation toward detecting the inlier structure
containing more points. It is computationally more advan-
tageous to detect and remove this inlier structure first so
that fewer points are left for the subsequent iterations of the
algorithm. If the data contains multiple inlier structures

with similar noise and number of points, then the scale of
one of them is estimated first. Similar results were also
obtained for the example in [27, Fig. 2].

The projections ezi of the data points are computed by
projecting them to the � that gives the highest peak at the
estimated fraction, 	bq . The dimensions of the smallest
rectangular region around ���� in the projected space
enclosing nbq points, divided by two, gives the estimate of
the scale in k dimensions which forms the diagonal of S. The
corresponding points form an initial estimate of the inliers.

3.2 Step Two: Model Estimation Using Mean Shift

The set of inliers obtained in step one is used together with the
estimated scale matrix to perform model estimation.
Although this set may still contain a few outliers, the inlier-
outlier ratio is much higher than that in the original set of data
points. The model estimation is then performed by choosing
elemental subsets from this set, thus making it very efficient.

We generateN elemental subset-based model hypothesis.

The value ofN is specific to the problem and will be given in

Section 4. Given a hypothesis ½�; �����, we first compute

the k-dimensional projections ezi ¼ �>exi, i ¼ 1; . . . ; n. The

value of ec, such that ezi ¼ z
½ec�
i , is determined using (12). Since

the kernel KðuÞ is radial-symmetric, we can write it using

the profile �ðu2Þ ¼ KðuÞ. The multivariate kernel density

function based on the k-dimensional projections ezi is then

f�ðzÞ ¼
1

n

Xn
i¼1

�ððz� eziÞ> eB�1
i ðz� eziÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi

det eBi

q : ð17Þ

The original robust estimation problem of (13) can be
reformulated into the problem of maximizing the kernel
density in k dimensions. Given a �, the estimated intercept
����0 corresponds to the location of the mode of the kernel
density closest to ����. This mode is usually also the highest
mode of the kernel density f�ðzÞ:

����0 ¼ arg max
z

f� zð Þ: ð18Þ

The final estimate of the intercept b���� corresponds to the
location of the highest mode over all N randomly chosen
hypotheses, while the corresponding matrix b� is the estimate
of �:

½ b�; b����� ¼ arg max
�

�
arg max

z
f� zð Þ

�
: ð19Þ
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Fig. 3. Inlier fraction estimation. (a) Original data with two inlier structures. (b) Density plots for all 800 randomly generated hypotheses. (c) Histogram
of peaks Jq. The red region in the top of each bar corresponds to the highest 	qJq peaks. (d) Sum of the highest 	qJq peaks,  qsub. The location of
highest peak corresponds to the estimated fraction of the inlier structure with 	bq ¼ 0:35.



As compared to this, RANSAC just uses the ���� obtained
from the elemental subset as an estimate of the intercept.
This might be inaccurate, especially when the data contains
asymmetric inlier noise.

Given a hypothesis ½�; �����, the maximization problem
(18) is solved by initializing mean-shift procedure from ����.
Taking the derivative of (17) w.r.t. z:

rf� zð Þ ¼ 2

n

Xn
i¼1

eB�1
i �zi

g
�
�z>i

eB�1
i �zi

�ffiffiffiffiffiffiffiffiffiffiffiffiffi
det eBi

q ¼ 0; ð20Þ

where �zi ¼ z� ezi and gðu2Þ ¼ ��0ðu2Þ. The mean shift
vector can be written as

�z ¼
Xn
i¼1

eB�1
i g . . .ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
det eBi

q
2
64

3
75
�1 Xn

i¼1

eB�1
i ezig . . .ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

det eBi

q
2
64

3
75� z: ð21Þ

Note that the bandwidth matrix eBi is different for each
point, making the problem heteroscedastic. The iterationezðjþ1Þ ¼ �zðjÞ þ ezðjÞ is an ascent step converging to the closest
mode, ����0.

Stopping criterion. To decide whether the estimated
model belongs to an actual inlier structure, we compute a
measure of the strength of the current inlier structure as
� ¼ fb�ðb����Þ=kSk2. The algorithm stops if the strength drops by
a factor of 20 compared to the maximum of the strengths of
previously computed inlier structures, indicating that the
remaining points comprise only unstructured outliers. This
stopping criterion is merely a heuristic, but worked well for
all the applications presented in this paper.

3.3 Local Optimization on Grassmann Manifolds

In general, � is an m� k orthonormal matrix, which can be
represented as a point on the Grassmann manifold, Gm;k.
The function (17) can then be optimized on Gm;k � IRk

simultaneously with respect to � and ����, which results in a
better model estimate.

For optimization over Grassmann manifolds, the conju-
gate gradient method can be used [8]. In order to compute the
derivatives of f�ðzÞ w.r.t. � and ����, we assume that the
covariance matrices eHi ¼ �> eCi� are independent of �. In
practice, this assumption does not change the results
significantly while saving a lot of computation time. More-
over, the optimization is performed only for those hypotheses
for which the density obtained by maximizing (17) using
mean-shift is greater than 0.9 times the highest density
obtained over all previous hypotheses. This algorithm was
used previously for pbM in [29], where the optimization
function (17) was assumed to be independent of the scale
matrix S�. This worked for the homoscedastic applications
but is quite unrealistic in general.

Here, the estimated scale matrix is not dependent on �.
The theory of Grassmann manifolds and the conjugate
gradient algorithm for optimization on Gm;k � IRk, along
with several experiments for single-carrier problems, can be
found in [22]. In this paper, we will evaluate this algorithm
on a multicarrier application in Section 4.3.1.

3.4 Step Three: Inlier/Outlier Dichotomy

Once the model estimation is performed, the final step is to
separate the inliers from the outliers. This separation is based

on the assumption that each inlier structure is corrupted with
generally different, asymmetric and unimodal additive
noise. Given the model estimate ½ b�; b�����, let ezi (with
bandwidth matrices eBi) be the projections of the data points
onto b�. Starting mean-shift iterations from every point ezi,
i ¼ 1; . . . ; n, the points for which the procedure converges atb���� (with a small tolerance) are considered as inliers. This
method of dichotomizing data points into inliers and outliers
is coherent with the maximum likelihood rule, according to
which points with residuals outside the basin of attraction of
the mode are more likely to be outliers.

Points lying close to the boundary of the basin of
attraction should be dichotomized very carefully. Some-
times, even a small error in the estimation of model
parameters could lead to misclassifications around the
boundary, especially for multivariate problems. One way of
solving the problem is to use additional information that
can be reliably extracted after all models are estimated. For
example, in multiple projective motion segmentation,
fundamental matrices for each motion can be robustly
estimated and used to classify the points lying close to the
boundary. This will be discussed in Section 4.2.2.

3.5 Discriminative Reclassification

In data containing multiple inlier structures, there are often
points that lie at the intersection of two or more subspaces.
Due to the iterative nature of random hypotheses-based
algorithms, such points get associated with the structure
that is detected first. This could lead to misclassification of
points. To overcome this problem, we perform a reclassi-
fication of the detected inliers after all the inlier structures
are estimated.

Since the unstructured outliers were already removed,
we only have the estimated models and their respective set
of inlier points. For each inlier point in every structure, we
compute the kernel density for all the estimated models.
The kernel densities are between 0 and 1 and a point is then
assigned to the structure that gives the maximum density.
This can improve the overall classification accuracy. Some
examples are presented in Section 4.

4 EXPERIMENTS

We present three groups of experiments. First, we show the
performance of our algorithm on both single and multicarrier
synthetic examples. Then, we present two single-carrier real-
world applications—face image clustering and projective
motion segmentation. Finally, we show two multicarrier
applications—camera calibration and multiple homography
estimation. Each application is formulated as a robust
subspace estimation problem (4). The corresponding values
for length of the carrier vector m, the dimensionality of the
null space k, and the number of carriers �, are provided for
each example. The multiplicative ambiguity in the estimation
problem (4) is resolved by using the constraint �>� ¼ Ik�k.

4.1 Synthetic Examples

4.1.1 Conic Lines ðm ¼ 3; k ¼ 2; � ¼ 1Þ
A line in 3D can be represented as an intersection of two
planes. The problem of line estimation is homoscedastic
since the variables and carriers are identical. We consider
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eight different lines in 3D lying on surface of a double cone
with its vertex at ð0; 0; 0Þ and axis aligned with z-axis. The
angle between each consecutive pair of lines is about 7:3�.
Along each line, we generated 50 equally spaced inlier points
with z-coordinate between ½�6; 6�. The x, y, and z coordinates
of the inliers were independently corrupted with zero mean
Gaussian noise with standard deviation of 0.02. In addition,
500 unstructured outliers were added uniformly in x, y, and z
between ½�3;�3;�8�, ½3; 3; 8�. This is a very challenging
problem because each inlier structure comprises only a
fraction 0.056 of the total number of points. Neither the
number of inlier structures nor the scale of noise in each
structure is known.

For each inlier structure, in the scale estimation M ¼
1;000 and in the model estimation N ¼ 200 were used. The
results were compared with RANSAC [12], the Kernel
Fitting (KF) method [4], and the J-Linkage method [31].

We performed 100 runs of each algorithm. The KF and
J-Linkage methods detected an average of 1.73 and 10.36
lines, respectively. In 99 out of 100 runs gpbM was able to
detect all eight lines and only in one case did it detect seven
lines instead of eight. For gpbM, the error in the estimation of
� as a difference in the angle between the estimated and true
lines in 3D, averaged for all eight lines over 100 runs was
0:214�. The corresponding error in the estimation of ���� as the
norm of 2D deviation from ð0; 0; 0Þ was 0.02. Fig. 4 shows a
comparison of the sample results obtained. RANSAC was
able to find all eight structures only if the right parameters
were given and is not shown in the figure. Note that
the comparison with RANSAC and J-Linkage is not fair since
both these methods had to be provided the value of true scale
of inlier noise. Additionally, RANSAC was also given
the actual number of inlier structures and J-Linkage the
minimum number of inliers present in an inlier structure.

4.1.2 Three Intersecting Lines ðm ¼ 2; k ¼ 1; � ¼ 1Þ
We generated three inlier structures, each along a different
line in 2D having 100, 200, and 300 points. The problem is
homoscedastic. The x and y-coordinates of the inliers were
independently corrupted with zero-mean Gaussian noise.
The corresponding standard deviations of the noise were
0:1�, 0:05�, and 0:12�, where � was varied uniformly
between ½0; 1:2� in steps of 0.15. Any other such setting for
number of points and inlier noise yields similar results. The
larger the value of �, the more was the overlap between the
three structures. In addition, 400 random outliers were also
added between ½�1;�1� and ½3; 3�, resulting in a total of
1,000 data points.

We compare of our algorithm with RANSAC [12] and
kernel fitting method [4]. For each value of �, the results of
all the algorithms were averaged over 50 runs. RANSAC
was always provided the true scales of the inlier noise. For
gpbM, M ¼ 1;000 and N ¼ 200 were used for all values of �.

The results of the experiments are summarized in Fig. 5.
For � ¼ 1:2, Figs. 5b and 5c show the sample results
obtained using gpbM, before and after the discriminative
reclassification step. In Fig. 5d, the average number of
misclassification errors (out of 1,000 points) for various
values of � are reported for each method. The gpbM
algorithm outperforms the other methods for all values of
the inlier noise even without the discriminative reclassifica-
tion step, which further improves the results.

4.1.3 Ellipse Fitting ðm ¼ 3; k ¼ 1; � ¼ 2Þ
We also tested our algorithm on the heteroscedastic, ellipse
fitting problem of Fig. 2. In addition to the 100 noisy inlier
points ð� ¼ 0:0707Þ, 500 uniformly distributed outliers were
added between ½�2:5;�2:5;�2� and ½2:5; 2:5; 12�, resulting in
a total of 600 data points. We compared the performance of
gpbM algorithm with that of RANSAC over 100 runs of
both the algorithms. The scale provided to RANSAC was
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Fig. 4. Eight conic lines. There are 50 inliers point in every line and 500 unstructured outliers. See text. The inliers are independently corrupted with
Gaussian noise with � ¼ 0:02. Only gpbM is able to recover all eight lines in practice.

Fig. 5. Three intersecting lines. (a) Sample input data for � ¼ 1:2.
(b) Detection results using the gpbM algorithm before discriminative
reclassification. (c) Detection results after discriminative reclassification
with 24 points corrected. (d) Number of average misclassification errors
over 50 runs computed for different values of �. The results of gpbM
without discriminative reclassification are reported under gpbM	.



computed as half of norm of homoscedastic scales, bs1hom

and bs2hom. (See Section 1.) Using the values of M ¼ 500 and
N ¼ 100, on average, the gpbM algorithm misclassified
19.3 points, as opposed to RANSAC which misclassified
72.5 points. Fig. 6 shows sample results for both algorithms.

4.2 Real Single Carrier Applications

4.2.1 Face Image Clustering ðm ¼ 20; k ¼ 18; � ¼ 1Þ
Clustering face images under varying illumination is a
difficult problem. It has been proven that the set of images
of the same object taken under varying illumination
conditions forms a polyhedral cone in the image space
which can be approximated by a low-dimensional linear
subspace [15]. We test our algorithm on data containing 500
images—50 frontal face images of each of the 10 subjects of
Yale Face Database B. The number of subspaces (number of
subjects) is not known a priori.

Clustering of faces using the spectral clustering method
was first successfully addressed in [18]. We follow this
work to compute the symmetric global affinity matrix with
nonnegative entries and apply the gpbM algorithm to fit
linear subspaces in its low-dimensional representation. The
problem is homoscedastic since the variables and carriers
are identical.

Each image xi is vectorized and represented as a linear
combination of the remaining images xj, j ¼ 1; . . . ; n
ðn ¼ 500Þ, with weights wij:

xi ¼
X
j;j6¼i

wijxj; i; j ¼ 1; . . . ; n: ð22Þ

These weights are computed by solving a constrained least-
squares estimation problem, subject to wij > 0 and wii ¼ 0.
The weights are then stacked in a matrix W such that
Wði; jÞ ¼ wij. This matrix is usually quite sparse due to less
similarity between faces of different subjects, which is true
for this database. The 500� 500 symmetric affinity matrix is
formed as A ¼ ðWþW>Þ=2. The matrix A is then normal-
ized by computing P ¼ D�1=2AD�1=2, where D is a
diagonal matrix with Dði; iÞ ¼

P
j Aði; jÞ ¼

P
j Aðj; iÞ. The

eigenvectors corresponding to the m largest eigenvalues of
P form a n�m matrix Q. Images of the same subject taken
under varying lighting conditions generally lie in a d < m
dimensional subspace [18]. Therefore, the dimensionality of
the null space is k ¼ m� d.

The clustering algorithms proposed in [2] and [36] used
frontal images of three out of the total 10 subjects for
evaluation of their techniques. However, in all their
experiments, they used uncropped face images where the
presence of substantial background makes the problem
relatively easier. For example, Fig. 7 shows the face data of

the three subjects projected in three dimensions with and
without the background. The subspaces are well separated
in the first image due to different backgrounds of the three
subjects.

We evaluate our algorithm over 500 cropped frontal face
images of all the 10 subjects. Each image was then down-
sampled to 64� 64 size for faster computation. Fig. 8 shows
three examples for each of the 10 subjects. The Q matrix was
formed by using first m ¼ 20 significant eigenvectors. With
M ¼ 5;000 and N ¼ 500, we used the gpbM algorithm to fit
2D subspaces ðk ¼ 18Þ. Each subspace corresponds to one
subject in this 20D space. For 100 runs, the average and
median errors over 500 images were 3.42 and 3.4 percent.

Similar performance was also achieved on data containing
images of three to nine subjects (50 per subject), with the
value of m increasing from 10 to 18. In all experiments, the
performance was slightly worse for d ¼ 3. For d ¼ 2 and
m ¼ 20, we tested the method of [2] on data containing the
same 500 cropped images and it gave an error of 61.4 percent.

4.2.2 Projective Motion Factorization

ðm ¼ 15; k ¼ 12; � ¼ 1Þ
We use point trajectories across multiple frames to segment
multiple rigid body motions in a video sequence. Several
approaches have been proposed which can be categorized
into factorization-based [32], [34], clustering-based [9], [19],
[11], robust estimation-based [12], [26], [3], [29], algebraic
[36], and statistical methods [30], [16]. A brief review of
most of these techniques can be found in [9]. Except for [3]
and [29], all other methods assume that the number of
motions is known a priori. We compare the performance of
our algorithm with other state-of-the-art robust subspace
estimation methods on the Hopkins155 dataset. We also
show the performance on the parking lot sequence that also
contains unstructured outliers.

Assume that n1 rigidly moving inlier points lying on a
single motion are tracked over all F frames. The 2F image
coordinates are used to define a feature vector for each
point in IR2F . In general, these n1 vectors lie in a 4D
subspace of IR2F [32]. In all the experiments, we use F ¼ 5
frames. For the Hopkins155 dataset, this corresponds to
selecting every sixth or seventh frame for each sequence.

In homogeneous coordinates, the ith noisy, inlier image
point in the jth frame, qji and its corresponding noisy 3D
world point Qi are related as
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Fig. 6. Ellipse estimation in 3D. (a) Sample input data. (b) Detection
results using gpbM. (c) Detection results using RANSAC.

Fig. 7. Frontal faces of three subjects of Yale Database B projected to
3D. Left: Face images with background as used in [36] and [2]. Right:
Same images projected to 3D after cropping faces.

Fig. 8. Example frontal face images of Yale Database B used in our
experiments.




jiq
j
i � PjQi; i ¼ 1; . . . ; n1; j ¼ 1; . . . ; F ; ð23Þ

where 
ji is the projective depth of qji and Pj is the 3� 4

camera matrix for jth frame. A homogeneous image point

qji ¼ ½x
j
i ; y

j
i ; 1�

>, together with its depth 
ji , gives the vector of

variables yi ¼ ½ðx1
i ; y

1
i ; 


1
i Þ; . . . ðxFi ; yFi ; 
Fi Þ�

>
. The correspond-

ing carrier vector is given by xi ¼ ½ð
1
i x

1
i ; 


1
i y

1
i ; 


1
i Þ . . .

ð
Fi xFi ; 
Fi yFi ; 
Fi Þ�
>. In this case both yi and xi lie in IR3F . In

the absence of any prior knowledge, we assume that the noise

corrupting the depth and the image coordinates is identical

and known only up to a common scale �2, which is a coarse

approximation. The first order approximation of the 3F � 3F

covariance matrix Ci ofxi, computed using error propagation

is Ci ¼ �2J>xijyiJxijyi , where

Jxijyi ¼

JJ 1
i 0 0 . . . 0

0 JJ 2
i 0 . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . JJ F
i

2
6664

3
7775;JJ j

i ¼

ji 0 0
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ji 0

xji yji 1

2
64

3
75:
ð24Þ

For data containing multiple, nondegenerate motions
and unstructured outliers, the unknown motion subspaces
are estimated from the 3F � n carrier data matrix in two
steps. In the first step, assuming all the unknown depths to
be equal to one ð
ji ¼ 1Þ, an iterative affine motion
estimation is performed using gpbM. Since the variables
and carriers are identical, this step is homoscedastic with
m ¼ 2F ¼ 10. The size of the elemental subset is four and
due to centering of the elemental subset data for hypotheses
generation, the dimensionality of the null space is
k ¼ 2F � 3 ¼ 7. This step returns the initial estimates of all
the motions and their associated inliers. Due to the affine
assumption, the inliers obtained for each motion are not
necessarily completely correct.

In the second step, for each motion we first estimate the
unknown projective depths. The carrier vector is hetero-
scedastic due to the multiplication of the image points with
their depths. The data corresponding to each inlier structure
obtained using affine motion estimation can be factorized as

T ¼


1
1q

1
1 
1

2q
1
2 . . . 
1

n1
q1
n1


2
1q

2
1 
2

2q
2
2 . . . 
2

n1
q2
n1

..

. ..
. . .

. ..
.


F1 qF1 
F2 qF2 . . . 
Fn1
qFn1

2
6664

3
7775 ¼MS; ð25Þ

where M is the 3F � 4 motion matrix and S is the 4� n1

structure matrix. The unknown depths 
ji are estimated
using the iterative method of [34]. The algorithm starts with
all the depth values equal to one. The rank-four approx-
imation �T of T is computed using SVD. The least-squares
estimates of the depths are then obtained from �t

j
i , the entries

of �T corresponding to 
jiq
j
i as


ji ¼ �tji

� �>
qji=kq

j
ik

2; ð26Þ

where qji is the original image point and 
ji , �tji change in
each iteration. The iterations for estimating �T and 
ji end
when �T is within a small tolerance ð< 10�6Þ of T. The
method usually converges in very few iterations. After
obtaining the depths of all inlier points and rejecting the

outliers, the 3F � n carrier data matrix is also updated.
Similarly to the first step, an iterative projective motion
estimation is then performed using gpbM with the new
values of m ¼ 3F ¼ 15 and k ¼ 3F � 3 ¼ 12.

At the end of both affine and projective steps, we use
fundamental matrices to dichotomize the points lying close
to the boundary of the basin of attraction [37]. Only
the inlier points that lie within half a scale margin of the
boundary of basin of attraction in all dimensions are
considered. The inliers of each motion are used to robustly
estimate the ðF � 1Þ! fundamental matrices between all
pairs of frames using gpbM. The carrier vector and its
covariance matrix for fundamental matrix estimation were
given in Section 2. A boundary point xi is assigned to the
motion for which the sum of residuals of the epipolar
constraint (5) computed over all pairs of frames is minimum.
For this simple classification problem, the eight point
algorithm for estimating fundamental matrices is sufficient
because the data contains mostly inliers and we just want to
classify the point to its closest motion.

We present two groups of experiments. The Hopkins155
dataset has 155 sequences without unstructured outliers.
The parking lot sequence with three moving cars has
unstructured outliers too. For all these examples, the values
both M and N were conservatively set to 500. This is the
only application where we use Gaussian kernel instead of
Epanechnikov for density estimation because it gives
slightly improved performance.

The Hopkins155 dataset is available online at http://
www.vision.jhu.edu/data/hopkins155. It consists of 120
two-motion and 35 three-motion sequences which are
divided into three categories—traffic, articulated, and
checkerboard. We compared the performance of our
algorithm with five other methods—Generalized PCA
[36], RANSAC, Local Subspace Affinity (LSA) [40], pbM
[29], and the Ordered Residual Kernel method [3]. The
classification error is computed similarly to [3] and [36]:

classification error ¼ number of mislabeled points

total number of points
: ð27Þ

As opposed to pbM, ORK, and gpbM, the methods GPCA,
RANSAC, and LSA rely on the user to specify the actual
number of motions present in the data. Additionally,
RANSAC also requires an estimate of the scale of inlier noise.

Tables 1 and 2 compare the results obtained by various
methods on two and three-motion sequences. The results of
REF, the reference/control method generated for bench-
marking, GPCA, LSA, and RANSAC were obtained from
[35]. We used our own implementation of pbM. The results
of ORK [3] were not reported for individual categories. For
each sequence, the results for gpbM were averaged over 100
runs, while those of pbM were averaged over 20 runs.
Additionally, we obtained a median error of 5.6 percent for
two-motion and 6.2 percent for three-motion sequences.
Results can be further improved by handling degeneracies
present in the data.

The parking lot sequence contains four motions (back-
ground and three moving cars). The points across various
frames were matched using [14]. In total there were
474 points—213 on the background, 78 on first car (black),
75 on second car (silver), 46 on third car (maroon), and
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62 unstructured outliers. Fig. 9 shows sample motion
segmentation results using gpbM along with the corre-
sponding confusion matrix.

4.3 Real Multicarrier Applications

For both the applications presented in this section, we
assume that the noise is only present in the measured image
points. No explicit assumptions for the model of the carrier
noise are made.

4.3.1 Camera Calibration ðm ¼ 12; k ¼ 1; � ¼ 2Þ
Camera calibration is the task of estimating the 3� 4 camera

projection matrix P that relates the noisy 3D scene points Qi

to their corresponding noisy 2D image points qi as

qi � PQi; i ¼ 1; . . . ; n1; ð28Þ

where qi and Qi are in homogeneous coordinates. Note that
the projection matrix is same as �, but written as P
following the convention.

Given n point correspondences (inliers and outliers), let

½xi yi�> be the measured noisy image points and ½Xi Yi Zi�>
be the corresponding measured world points for i ¼ 1; . . . ; n.

The vector of variables is given by yi ¼ ½xi yi Xi Yi Zi�>.

Writing Qi ¼ ½Xi Yi Zi 1�>, the robust estimation problem is

to find the projection matrix P ¼ ½p1 p2 p3�> such that, for

each i ¼ 1; . . . ; n1,

Aip ¼ �Q>i 0>4 xiQ
>
i

0>4 �Q>i yiQ
>
i

� � p1

p2

p3

2
4

3
5 � 02: ð29Þ

For each point, Ai is the 2� 12 carrier matrix where the two

rows of Ai are the two carrier vectors x
½1�
i and x

½2�
i which are

heteroscedastic due to multiplicative terms. Therefore,
m ¼ 12, k ¼ 1, and � ¼ 2.

Given six 2D-3D point correspondences, the 12� 12 data
matrix is formed by stacking the corresponding six carrier
matrices. The hypothesis for the camera matrix is then
computed by using the Direct Linear Transformation (DLT)
algorithm [17, Algorithm 7.1]. Since our data also contains
outliers, we only compute the initial linear solution here.
While sophisticated techniques for detecting degenerate
configurations for camera calibration exist, in our case,
checking if this data matrix is rank-11 was sufficient.

We assume that the noise is only present in the x and y-
coordinates of the 2D image points and the 3D points are
noiseless. The 5� 5 covariance matrices of the variables yi
are defined as

Cyi ¼ �
2 I2�2 02�3

03�2 03�3

� �
; i ¼ 1; . . . ; n: ð30Þ

For a point correspondence between qi and Qi, the 5� 12
Jacobians for the two carriers are given by

J
x
½1�
i jyi
¼

0>3 Q>i
0>3 05�5 0>3 0

�I3�3 xiI3�3 03

2
64

3
75;

J
x
½2�
i jyi
¼

0>3 0>3 0

05�4 0>3 05 Q>i
�I3�3 yiI3�3 03

2
64

3
75:

ð31Þ

The corresponding 12� 12 covariance matrices are then
computed as

C
½c�
i ¼ J>

x
½c�
i jyi

CyiJx
½c�
i jyi

; c ¼ 1; 2:

We use a Merton College image obtained from http://
www.robots.ox.ac.uk/~vgg/data/data-mview.html for
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TABLE 2
Percent Classification Errors for Three-Motion Sequences

Only pbM, ORK, and gpbM are user independent.

Fig. 9. Sequence with four motions and unstructured outliers. (a) and
(b) First and last frames with various motions marked. White points
marked + show unstructured outliers. (c) Motion factorization results
using gpbM (only inliers are shown). (d) Confusion matrix. M1, M2, M3,
and M4 correspond to background, black car, silver car, and maroon car,
respectively.

TABLE 1
Percent Classification Errors for Two-Motion Sequences

Only pbM, ORK, and gpbM are user independent.



evaluation of our algorithm. The same image is also used

for homography estimation in Section 4.3.2 (Fig. 11a-top).

Here, there are 575 inlier 2D-3D point correspondences

available. Since the 3D points in the scene have compar-

able distances from the camera, both 2D and 3D points

were normalized using the isotropic scaling as described

in [17, p. 180].
We present three sets of experiments. Given an estimated

projection matrix bP, we use the average geometric error of the

575 true inlier points qi and their computed reprojectionsbqi ¼ bPQi as the metric for comparing various methods.

While increasing either the amount of inlier noise or the

number of outliers in gpbM, the value of M was varied

uniformly between 500 to 2,000 and that ofN between 100 to

200. The results of each algorithm were averaged over 50 runs.
In the first set, uniformly distributed outlier point

correspondences were added and their number was varied

from 0 to 1,500 in steps of 100. In the second experiment, we

added zero-mean Gaussian noise independently both in x

and y-coordinates of the image points. The standard

deviation of this noise, �2D was varied between one to four

pixels in steps of 0.4 pixels. In both the experiments, we

compared our algorithm with RANSAC [12] and the kernel

fitting method [4]. For each inlier structure, RANSAC had to

be provided the true scale of the inlier noise. For every setting,

the two algorithms used M þN random hypotheses. All the

algorithms were very sensitive to noise added to 3D points, so

no noise in 3D points was added. The results of these two

experiments are summarized in Figs. 10a and 10b. In both the

experiments, gpbM outperformed the other two methods.
In the third experiment, we tested the gpbM algorithm by

varying both the number of outliers and the scale of the inlier

noise (Fig. 10c). We also tested gpbM by additionally

performing model optimization over Grassmann manifolds

(Fig. 10d). Details of this step can be found in [22,

Section 4.2.1]. It is clear that this step further improves that

the performance of gpbM. The gpbM algorithm started to

break down when number of outliers approached 1,500

(about three times the number of inliers) even when 20,000

hypotheses were used.

4.3.2 Multiple Planar Homography Estimation

ðm ¼ 9; k ¼ 1; � ¼ 2Þ
A planar homography is a general 2D transformation

between two projective planes. Let qi and q0i be a

corresponding pair of homogeneous, noisy inlier points.

Given a 3� 3 homography matrix H between the two

planes, qi can be mapped to q0i using the relation

q0i � Hqi; i ¼ 1; . . . ; n1: ð32Þ

Note that the homography matrix is same as �, but written as
H following the convention. Given n noisy point correspon-
dences (inliers and outliers), let ½xi yi�> and ½x0i y0i�

>,
i ¼ 1; . . . ; n, be the measured noisy points in the two images.
Each point correspondence gives a vector of variables
yi ¼ ½xi yi x0i y0i�

>, i ¼ 1; . . . ; n. Writing qi ¼ ½xi yi 1�>, the
robust estimation problem is to find the homography matrix
H ¼ ½h1h2h3�> such that, for each i ¼ 1; . . . ; n1,

Aih ¼
�q>i 0>3 x0iq

>
i

0>3 �q>i y0iq
>
i

� � h1

h2

h3

2
4

3
5 � 02: ð33Þ

For each point correspondence, Ai is the 2� 9 carrier

matrix. The rows of Ai correspond to the two carrier vectors

x
½1�
i and x

½2�
i obtained from each point correspondence and

are heteroscedastic due to multiplicative terms. Therefore,

m ¼ 9, k ¼ 1, and � ¼ 2.
Given four point correspondences across two planes, the

8� 9 data matrix is formed by stacking the corresponding

four carrier matrices. For a point correspondence pair qi
and q0i, since the noise is only present in the x and y

coordinates, the 4� 4 covariance matrix of the variable yi is

given as Cyi ¼ �2I4�4, i ¼ 1; . . . ; n. The 4� 9 Jacobians of

the two carriers are given by

J
x
½1�
i jyi
¼
�I2�2 x0iI2�2 02

0>2 04�4 q>i
0>2 0>2 0

2
64

3
75;

J
x
½2�
i jyi
¼

�I2�2 y0iI2�2 02

04�3 0>2 04 0>2 0

0>2 q>i

2
64

3
75:

ð34Þ

The corresponding 9� 9 covariance matrices are computed

as C
½c�
i ¼ �2 J>

x
½c�
i jyi

CyiJx
½c�
i jyi

, c ¼ 1; 2.
We perform experiments on two pairs of Merton College

images obtained from http://www.robots.ox.ac.uk/~vgg/

data/data-mview.html. The number of inlier point corre-

spondences in the two pairs was 361 and 429, which were

distributed among four significant planes. The number of

homographies in each pair of images was not known a priori.
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Fig. 10. Camera calibration experiments performed on Fig. 11a-top.
(a) Average geometric error computed by varying the number of
outliers with zero inlier noise. (b) Average geometric error computed
by varying the inlier noise when no outliers were added. Note that the
comparisons with RANSAC are not fair because it needs true
parameters as input. (c) Average geometric error computed for gpbM
when both, the inlier noise and the number of outliers were varied.
(d) Performance of gpbM when Grassmann manifold optimization was
added to the model estimation step.



In all these experiments, the points in the two images were
normalized using isotropic scaling [17, p. 107].

For each image pair two sets of experiments were
performed. In the first experiment, uniformly distributed,
random outlier point correspondences were added and their
number was varied between 0 to 200 in steps of 25. Beyond
200 outliers, it became very difficult for the algorithm to
estimate homographies of all the planes. In the second
experiment, we added zero-mean Gaussian noise indepen-
dently in x and y coordinates of the inliers in both the images.
The standard deviation of the noise �2D was varied between 0
to 2 pixels in steps of 0.2. We compared the results of our
algorithm with RANSAC [12] and the kernel fitting method
[4]. RANSAC always needed the true scale of the inlier noise
and the number of inlier structures. The results of all the
experiments are summarized in Fig. 11. For each inlier
structure, for gpbM, the value of M varied uniformly
between 2,000 to 8,000 for increasing number of outliers or
the amount of inlier noise. The value ofN varied between 400
to 1,000. The other two methods used M þN iterations. The
results of each algorithm were averaged over 50 runs.

Since these examples have multiple inlier structures,
computing the error in point classification similar to (27) is
more informative. It penalizes inaccuracies in model
estimation, inlier/outlier dichotomy and discriminating
one inlier structure from the others. The gpbM algorithm
outperformed both RANSAC and KF for all settings of inlier
noise and number of outliers.

5 DISCUSSION

The gpbM algorithm can handle multivariate constraints for
single and multicarrier problems in a unified framework.
The scale of the inlier noise is estimated automatically for
each structure. We have shown its performance on
numerous datasets covering a wide variety of applications
in computer vision.

The execution time of the algorithm depends on various
factors like number of outliers, dimensionality of the
problem ðm; kÞ, amount of inlier noise, and number of inlier
structures. Since each of the first two stages of the gpbM
algorithm evaluates multiple elemental subset-based

hypotheses, those can be implemented in parallel. The
execution time can thus be decreased by using multiple
cores. As an example, consider the problem of affine
factorization ðm ¼ 10, k ¼ 7,and � ¼ 1Þwith data containing
a few hundred points with one inlier structure and
approximately equal number of inliers and outliers. A C
implementation of the algorithm takes about 0.33, 0.09, and
0.05 seconds for the first, second, and third steps, respec-
tively (without optimization on Grassmann manifolds),
when executed on an Intel quad-core machine with 8 Gb of
memory. If the optimization is also performed, then the
execution time of the second step increases to 0.18 seconds.
Also, since the hypotheses in the second step are generated
from the initial set of inliers obtained in the first step of the
algorithm, typically, the value of N is much smaller than M.
Because the computation time per hypothesis in the second
step is more than that of the first step, this leads to an overall
increase in the speed of the algorithm.

We have also highlighted the importance of estimating
models under heteroscedasticity, which allows us to
account for the nonlinearities in the data. The resulting
algorithm is theoretically more sound and also led to
improvements in the actual performance of the computer
vision systems. In the future, the algorithm can be extended
into various directions, e.g., detecting degeneracies in some
or all the inlier structures [13], optimizing hypothesis
generation using guided sampling [6], [24], and performing
regression in non-euclidean spaces [29].

Even after these enhancements, there will still be some
problems which probably cannot be solved by using only
bottom-up information. In the absence of any knowledge
about the number of structures or the scale of the inlier noise,
it is hard to decide if two very close lying inlier structures
should be merged into one or not. Similarly, points lying at
the intersection or boundary of two inlier structures cannot
be dichotomized perfectly unless we know something about
the underlying process that generates them. Without any
information about the scale of the inlier structures, success-
fully detecting 20-30 inlier structures in an image, a realistic
assumption for human vision, cannot be achieved with
current estimation methods that use only bottom-up
information. We believe that bringing automatic estimation
algorithms for computer vision to human vision-like
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Fig. 11. Multiple homography estimation. (a) and (b) Original left and right images. Each image pair contains inliers corresponding to four planar
homographies and 150 random outliers. (c) Results of the gpbM algorithm after discriminative reclassification of inliers. (d) Classification error
computed by varying the number of outliers with zero inlier noise. (e) Classification error computed by varying the inlier noise when no outliers were
added. Note that the comparisons with RANSAC are not fair because it needs true parameters as input.



performance would require a human vision-like optimal mix

of bottom-up and top-down information.
The code for our algorithm is written in MATLAB and C

and can be downloaded from http://coewww.rutgers.edu/

riul/research/code/GPBM/index.html.
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