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Abstract

We introduce a robust estimator called generalized pro-
jection based M-estimator (gpbM) which does not require
the user to specify any scale parameters. For multiple in-
lier structures, with different noise covariances, the esti-
mator iteratively determines one inlier structure at a time.
Unlike pbM, where the scale of the inlier noise is esti-
mated simultaneously with the model parameters, gpbM has
three distinct stages – scale estimation, robust model esti-
mation and inlier/outlier dichotomy. We evaluate our per-
formance on challenging synthetic data, face image clus-
tering upto ten different faces from Yale Face Database B
and multi-body projective motion segmentation problem on
Hopkins155 dataset. Results of state-of-the-art methods are
presented for comparison.

1. Introduction

RANdom SAmple Consensus (RANSAC) is the most
widely used robust algorithm for computer vision applica-
tions and it depends on the user for specifying the scale of
the inlier noise [9]. There are applications where it is hard
for the user to provide the scale. For example, in video
sequences, the scale of the inlier noise could change from
frame to frame based on how fast the camera is moving.
The various enhancements of RANSAC, like MLESAC,
LO-RANSAC, PROSAC and QDEGSAC etc. (see [16]),
propose changes to either the cost function, the sampling
method, or detecting the degeneracies in data. However,
none of these address the problem of manual scale selec-
tion.

Estimating the scale of the inlier noise is an impor-
tant problem for any robust regression algorithm. The ro-
bust Kth Ordered Scale Estimator (KOSE) and Adaptive
Least Kth order Squares (ALKS) [14] are generalization of
the MAD (Median Absolute Deviation) based method and
were among the first ones to address the problem of auto-
matic scale estimation. Similarly, an algorithm to compute
both the model and scale of the noise simultaneously using
Weighted Median Absolute Deviation (WMAD) method
was proposed in [8]. All previous versions of the projection
based M-estimator (pbM) [4, 18, 19] also used a variant of
the MAD scale estimate. Due to their dependence on MAD

Figure 1. Left: Data containing multiple inlier structures and out-
liers. Center: Scale of noise estimated independently in each di-
mension of the two-dimensional null space, Θ (incorrect). Right:
Scale estimated simultaneously in both the dimensions (correct).

based scale estimation, all these methods are bound to fail
when inliers comprise less than half the data points or con-
tain noise from an asymmetric distribution. This is often the
case when several inlier structures are present.

The Modified Selective Statistical Estimator (MSSE) [2]
is a generalization of the Least Median of Squares method
and tries to estimate the fraction of data points that belong
to an inlier structure. However, it requires the user to spec-
ify an initial estimate of the minimum acceptable popula-
tion of every inlier structure. The Two-Step Scale Estima-
tor (TSSE) [26] uses mean shift to first find an inlier-outlier
dichotomy and then estimate the scale, but their method as-
sumes symmetric inlier distribution around the mode.

The main disadvantage of all these methods is that they
estimate the scale of noise independently for each dimen-
sion of the null space. This may lead to gross inaccuracies
in the scale estimate especially when data contains multiple
inlier structures. Fig. 1 illustrates this problem using a mul-
tiple line fitting example in 3D. The four inlier structures
lie along four parallel lines each having a different scale of
noise along the two axes of the null space, Θ. It is impossi-
ble to estimate the scale correctly if the estimation is done
along each axis of Θ independently.

The projection based M-estimator (pbM) is described in
[19] for estimating m − k dimensional subspaces in Rm.
This method maximizes the M-score over randomly cho-
sen subspace hypotheses. Let Θ ∈ Rm×k represent the
k-dimensional null space of the subspace hypothesis. The
computation of the M-score depends on the k × k diagonal
scale matrix SΘ whose diagonal entries are computed for
p = 1, . . . , k using

SΘ(p, p) = n−1/5 med
j

∣∣∣zpj −med
i
zpi

∣∣∣ , i, j = 1, . . . , n (1)
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where zpi = θ>p xi is the projection of the ith data point,
xi on to the pth column of Θ. Since SΘ depends on a
particular Θ, it does not correspond to the actual scale of
the inlier noise. The independence of the M-score over the
Θ-dependent scale is only partially achieved by normaliz-
ing each M-score with the determinant of SΘ [19]. Often,
mean shift cannot converge to the correct mode using an
incorrect scale estimate especially when the data contains
asymmetric noise and multiple inlier structures. Using a Θ-
dependent scale reduces the discrimination between correct
and incorrect hypotheses.

We address these issues and present the generalized pbM
(gpbM) algorithm for estimating multiple inlier structures
from the data in the presence of outliers. An estimate of the
scale and fraction of points belonging to an inlier structure
is computed automatically in the beginning. The model es-
timation is then performed very efficiently using just the
inliers returned by the scale estimate. Being completely
user independent this method has obvious advantages over
RANSAC-like algorithms and pbM [19].
• We propose an automatic method for estimating the

scale of inlier noise in k dimensions simultaneously.
• We develop the most general form of pbM which can

handle heteroscedastic data for single or multiple con-
straints in a unified framework.
• We introduce a new, theoretically justified method for

inlier/outlier dichotomy.
In Section 2, we formulate the robust subspace estima-

tion problem in k dimensions. In Section 3, we describe
in detail the generalized projection based M-estimator. In
Section 4 we present experimental results. We evaluate
our algorithm on challenging synthetic data, face image
clustering for all ten subjects from Yale Face Database B
and multi-body projective motion segmentation problem on
Hopkins155 dataset as well as on a real-world example that
contains unstructured outliers also.

2. Robust Subspace Estimation
In computer vision there is usually a non-linear relation-

ship between the variables y and the carriers x. The estima-
tion problem is heteroscedastic, i.e., each carrier vector has
a different covariance matrix, and in general can even have
different mean. Let xio, i = 1, . . . , n1, be the true values of
the inlier carrier points xi ∈ Rm. Given a set of k linearly
independent constraints, they can be expressed by an equiv-
alent set of orthonormal constraints. The m × k (k < m)
orthonormal matrix Θ represents the k constraints satisfied
by the inliers. The inliers have m − k degrees of freedom
and thus lie in a subspace of dimension m − k. Geometri-
cally, Θ is the basis of the k-dimensional null space of the
data.

Given n (> n1) data points xi, i = 1, . . . , n, the prob-
lem of robust linear subspace estimation is to estimate the

parameter matrix Θ ∈ Rm×k and the intercept α ∈ Rk
from the system of equations

Θ>xio −α = 0k . (2)

The multiplicative ambiguity is resolved by requiring
Θ>Θ = Ik×k. For example, in fundamental matrix esti-
mation, θ ∈ R8. Each data point is a vector of variables
y = [x1 y1 x2 y2]

>, and lies in R4. Here, (xi, yi), i =
1, 2 are the coordinates of the corresponding points in the
two images. The carrier vector used for linear regression is
x = [x1 y1 x2 y2 x1x2 x1y2 y1x2 y1y2]

> which lies
in R8. Assuming the variables y have covariance σ2I4×4,
the first order approximation of the covariance matrix of x
is computed from the Jacobian using error propagation [15]

Jx|y =


1 0 0 0 x2 y2 0 0
0 1 0 0 0 0 x2 y2
0 0 1 0 x1 0 y1 0
0 0 0 1 0 x1 0 y1

 = [ I4×4 J(y) ] (3)

Cx = σ2J>x|y I4×4 Jx|y = σ2

[
I4×4 J(y)

J(y)> J(y)>J(y)

]
. (4)

The covariance matrices, Cx are used to estimate the point
dependent scale of the noise in the regression data.

The points xi, i = n1 + 1, . . . , n are outliers and no
assumptions are made about their distribution. Since there
could be several inlier structures, relative to one inlier struc-
ture the outliers can either belong to another inlier struc-
ture (structured outliers) or can be completely unstructured
(gross outliers). No prior knowledge about the number of
inlier structures is assumed. We consider here that the value
of k is known and the data in not degenerate.

3. Generalized pbM Algorithm
The gbpM algorithm uses elemental subsets from which

the estimates of Θ are generated. The elemental subset
based hypothesis generation was a well established method
in statistics even before RANSAC. While RANSAC uses
the elemental subsets to estimate both Θ and α, gpbM uses
them to estimate only Θ.

We define the robust heteroscedastic objective function
as

[
Θ̂, α̂

]
= argmax

Θ,α

1

n

n∑
i=1

K

((
(Θ>xi −α)>B−1

i (Θ>xi −α)
) 1

2

)
√
detBi

(5)

where, Θ>xi − α measures the deviation of the data from
the required constraint. The kernel function K(u) is re-
lated to the M-estimator loss function ρ(u) by K(u) =
1 − ρ(u), where ρ(u) is a redescending M-estimator and
is non-negative, symmetric and non-decreasing with |u|. It
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has a unique minimum of ρ(0) = 0 and a maximum of one
for |u| > 1.

The variables yi are assumed here to be homoscedas-
tic (not necessary in general) and their covariance matri-
ces, Cyi

are used to compute the covariance matrices Ci

of the carriers xi by error propagation [15]. (We will use
Ci instead of Cxi

for convenience.) The k × k covari-
ance matrices of the projections zi = Θ>xi are given by
Hi = Θ>CiΘ. Note that each m × k matrix Θ results in
different k × k covariance matrices, Hi.

The scale matrix S is a k × k diagonal matrix, where
the diagonal entries correspond to the value of scale in each
dimension of the null space. As opposed to pbM [19], our
scale matrix is Θ-independent. Finally, the k×k bandwidth
matrices Bi are given by Bi = S>HiS. Please note that
our formulation of the objective function in (5) is different
from the general homoscedastic M-estimator formulation
by an additional factor of [det Bi]

− 1
2 . By doing this we

make sure that deviations of points with larger covariances
have smaller weights than points with smaller covariances.

To detect and estimate an inlier structure, we solve the
optimization problem (5) in three steps. In step one, the k-
dimensional scale of the inlier noise is estimated. In step
two, we estimate the model parameter pair [Θ,α]. While
Θ is estimated from an elemental subset, the estimate of α
is computed as the location of the closest mode of the ker-
nel density function over the projections zi by using mean
shift in Rk. In step three, we compute the inlier/outlier di-
chotomy using the scale estimate from step one and model
parameters from step two. The inliers thus obtained are then
removed for the data and the three-step process is repeated
to estimate another inlier structure. The algorithm stops
once the value of the kernel density at the detected mode
normalized by the determinant of scale matrix goes below a
small threshold. See Section 3.2 for details.

3.1. Step One: Scale Estimation

The fundamental difference between inlier and outlier
points is that the inliers are always tightly packed around
the regression surface while the outliers are not. We first
find the approximate fraction of data points that belong to
an inlier structure by capturing the difference in density of
the inliers and outliers.

We generate M elemental subset-based model hypothe-
ses, Θj , j = 1, . . . ,M . The value of M is specific to a par-
ticular problem and will be given in Section 4. For each Θj

the k-dimensional projections, zi = Θj
>xi, i = 1, . . . , n

are computed. Let TΘj be the k-dimensional null space in
Rm associated with Θj . We vary the value of the fraction
η, uniformly between (0, 1] in Q steps. For q = 1, . . . , Q,
let ηq be the qth fraction containing nq points. Therefore,

ηq = nq/n = q/Q . With a slight abuse of notation, let

volqj (zi) =

√√√√ nq∑
l=1

‖zi − zl‖2 (6)

be the volume around zi containing the fraction ηq of points,
where zl, l = 1, . . . , nq are the nearest neighbors of zi in
TΘj . For a given Θj and q, our goal is to find zqmin = zî
such that

î = arg min
i

(
volqj (zi)

)
. (7)

The simplest way would be to exhaustively search TΘj
for

zqmin using the nearest neighbor method [1], but unfortu-
nately it often becomes a computational bottleneck when n
and M are large. Instead, by doing linear search, we first
find smallest volume regions in one dimension along the in-
dividual dimensions of TΘj

. The centers of each of these
k regions are the candidate points for zqmin. Therefore, in-
stead of analysing all n points using nearest neighbor tech-
nique, we analyse only k, (k � n) candidate points. Do-
ing the k-dimensional search only for the k candidates does
not guarantee finding zqmin, but our experiments showed in-
significant differences in volume estimates compared to the
exhaustive search. This approximation speeds up the search
significantly and can also be implemented in parallel.

The density for the fraction ηq for a given Θj is com-
puted as ψqj = nq/(vol

q
j (z

q
min) + ε). Since volqj (z

q
min)

could be very close to zero for small fractions, a small con-
stant ε is added to suppress extremely high values of densi-
ties. Computing the density for all M hypotheses and all Q
fractions, we get an M × Q matrix Ψ, with Ψ(j, q) = ψqj .
For every q, let the number of rows of Ψ that have the maxi-
mum density in the qth column be Jq and corresponding set
of maximum density values be ψqmax. It can be verified that
the sum

∑Q
q=1 Jq = M . The sum of peak density values

for every q is then computed as

ψ̂q =
∑

ψ∈ψq
max

ψ. (8)

The summation of peak densities over all hypotheses makes
the estimation more robust than any one individual peak
density value. For example, in case of data containing
multiple inlier structures and outliers, for some particular
choices of Θj , the density computed for a combination of
points from two or more inlier structures could be more than
the densities for each individual inlier structure.

Fig. 2 illustrates the problem. The two inlier struc-
tures lie along two different lines in 2D each containing 100
points and 500 random outliers are also added. In Fig 2b,
for a particular hypothesis, Θ1, the value of ψqj peaks at
ηq = 0.3. This is more than the actual fraction of each in-
lier structure which is ηq = 0.143. Since there are very few
orientations that for which ψqj peaks at ηq = 0.3, the proba-
bility of selecting hypotheses like Θ1 is much less than the
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(a) (b) (c) (d) (e)
Figure 2. Inlier fraction estimation. (a) Original data with two inlier structures with the scale boundaries marked. (b) Boundary of the scale
for a specific hypothesis Θ1. (c) Density plots for all 400 randomly generated hypotheses. The solid black line shows the average peak
density value, ψ̂q/Jq for every fraction ηq . There are no peaks for ηq > 0.425. (d) Histogram of peaks. (e) Sum of peak density values,
ψ̂q . The location of highest peak corresponds to the estimated fraction value, ηq̂ = 0.125.

probability of selecting a hypothesis where ψqj peaks around
ηq = 0.143. See Fig. 2d. This observation is true even
when the two lines have different number of inlier points.
Our conservative estimate of the fraction is computed using

q̂ = arg max
q

ψ̂q. (9)

See Fig. 2c–e. The data points are projected to the Θ that
gives the highest peak at the estimated fraction, ηq̂ . The di-
mensions of the smallest rectangular region in TΘ enclos-
ing nq̂ points divided by two gives the estimate of the scale
in k dimensions which forms the diagonal of S. The corre-
sponding points are a conservative estimate of the inliers.

3.2. Step Two: Model Estimation Using Mean Shift

The set of inliers obtained in step one is used together
with the estimated scale matrix to perform model estima-
tion. Although this set may still contain a few outliers, the
inlier-outlier ratio is much higher than that in the original
set of data points. The model estimation is then performed
by restricting the selection of elemental subsets over this in-
lier set only. This makes our model estimation step efficient
as compared to the pbM and RANSAC algorithms.

For a given Θ, we first compute the k-dimensional pro-
jections zi = Θ>xi, i = 1, . . . , n. The original non-linear
robust estimation problem is reformulated into a simpler
problem of estimating the kernel density in k dimensions by
defining the profile of the kernel K(u) as κ(u2) = K(u).
Let the one-dimensional adaptive kernel density function
based on the k-dimensional projections zi is

fΘ (z) =
1

n

n∑
i=1

κ
(
∆z>i B−1i ∆zi

)
√

det Bi

. (10)

where ∆zi = z − zi. Taking the derivative of (10) we
observe that the stationary points should satisfy

∇fΘ (z) =
2

n

n∑
i=1

B−1i ∆zig
(
∆z>i B−1i ∆zi

)
√

det Bi

= 0 (11)

where g(u2) = −κ′(u2). The mean shift vector can be

written as

δz =

[
n∑
i=1

B−1i g (. . .)√
det Bi

]−1 [ n∑
i=1

B−1i zig (. . .)√
det Bi

]
− z. (12)

Note that the bandwidth matrix Bi is different for each
point, making the problem heteroscedastic. The iteration

z(j+1) = δz(j) + z(j) (13)

is a gradient ascent technique converging to the closest
mode, α, a stationary point of the kernel density function.

This step is repeated forN randomly generated hypothe-
ses of Θ generated from the set of inliers returned by step
one. The value of N is specific to the problem and will be
given in Section 4. The estimated intercept α̂ corresponds
to the location of the highest mode found, while the corre-
sponding matrix Θ̂ is the estimate of Θ.

Stopping Criterion: To decide whether the estimated
model belongs to an actual inlier structure, we compute a
measure of the strength of the current inlier structure as ξ =
fΘ̂ (α̂) /‖S‖2. The algorithm stops if the strength drops by
a factor of 20 compared to the maximum of the strengths
of previously computed inlier structures, indicating that the
remaining points comprise only unstructured outliers.

3.3. Step Three: Inlier/Outlier Dichotomy

Given the model estimate [Θ̂, α̂], let ẑi = Θ̂>xi. Start-
ing mean-shift iterations from every point ẑi, i = 1, . . . , n,
the points for which the procedure converges at α̂ (with a
small tolerance) are considered as inliers. The same band-
width matrices Bi are used for the mean shift kernel. This
method of dichotomizing data points into inliers and out-
liers is coherent with the maximum likelihood rule accord-
ing to which points with residuals outside the basin of at-
traction of the mode are more likely to be outliers. How-
ever, points lying close to the boundary of the basin of at-
traction should be carefully dichotomized. Even a small
error in the estimation of model parameters could lead to
misclassifications around the boundary. One way of solv-
ing the problem is to use additional information that can
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Original data gpbM Kernel fitting J-Linkage
Figure 3. Conic lines example. There are eight lines with 50 points per line and 500 random unstructured outliers. The inlier noise scale is
0.02. Only gpbM is almost always able to recover all eight lines.

be reliably extracted after model estimation. For example,
in multiple motion segmentation, fundamental matrices for
each motion can be robustly estimated and used to classify
the points lying close to the boundary. This will be dis-
cussed in Section 4.3.

4. Experimental Results

We present three groups of experiments. First we show
the performance of our algorithm on two synthetic line fit-
ting examples. Then we present two real-world applica-
tions: face image clustering and projective motion segmen-
tation. While the first two problems are homoscedastic due
to linear relationship between the carriers and variables, the
problem of motion segmentation is heteroscedastic. The
kernel density is estimated using the Epanechnikov kernel
in the first two problems and Gaussian kernel in the third.
The value of Q = 40 was used in all the experiments.

4.1. Synthetic Examples

Conic Lines. A line in 3D should satisfy two linear con-
straints. We generated 50 inliers each along eight different
lines in 3D for z coordinate between (−6, 6). The lines
lie on surface of a double cone with its vertex at (0, 0, 0)
and axis aligned with z-axis. The angle between consec-
utive pairs of lines is about 7.3o. The three coordinates
of the inliers were independently corrupted with zero mean
Gaussian noise with standard deviation of 0.02. In addition
500 outliers were added uniformly in x, y and z between
(−3,−3,−8), (3, 3, 8). This is a very challenging prob-
lem because each inlier structure comprises only a fraction
0.056 of the total number of points. Neither the number of
inlier structures nor the scale of noise in each structure is
known when applying the gpbM algorithm. For each in-
lier structure, in the scale estimation M = 1000 and in
the model estimation N = 200 were used. The results
were compared with RANSAC [9], the kernel fitting (KF)
method [6], and the J-Linkage method [21]. Both RANSAC
and J-Linkage had to be provided the value of true scale of
inlier noise. Additionally, RANSAC was also given the ac-
tual number of inlier structures and J-Linkage the minimum
number of inliers present in an inlier structure.

Fig. 3 shows a comparison of the results obtained.
RANSAC was able to find all the eight structures only if
right parameters were given and is not shown in the figure.
Over 100 runs, KF and J-Linkage detected an average of
1.73 and 10.36 lines respectively. In 99 out of 100 runs
gpbM was able to detect all eight lines and only in one case
it detected seven lines instead of eight. For gpbM, the error
in the estimation of Θ as a difference in the angle between
the estimated and true lines in 3D, averaged for all eight
lines over 100 runs was 0.214◦. The corresponding error
in the estimation of α as the norm of 2D deviation from
(0, 0, 0) was 0.02.

Star Lines. The data consisted of five inlier structures
containing 50 points each arranged in 2D as a star (Fig.4).
Each line was corrupted with zero mean Gaussian noise but
with different standard deviation: 0.005, 0.01, 0.015, 0.02,
0.025. Additionally, 500 random outliers were also added
uniformly between (0, 0) and (1, 1). Our results with M =
500 and N = 200 are compared with KF [6] and J-Linkage
[21]. J-Linkage was given the true scale of inlier noise and
minimum number of inliers present in each structure. Over
100 runs, KF and J-Linkage detected 3.74 and 2.85 lines on
an average. In all 100 runs gpbM was able to detect all five
lines. For gpbM, the difference in angle between the true
and fitted lines averaged for all five lines over 100 runs was
0.312◦. The corresponding error in the intercept was 0.016.

Original data gpbM Kernel fitting J-Linkage
Figure 4. Star lines. There are 50 points per line and 500 random
unstructured outliers. The gpbM always found all five lines.

4.2. Face Image Clustering

Clustering face images under varying illumination is an
important and difficult problem [12]. We follow this work
to compute the symmetric global affinity matrix with non-
negative entries. We apply the gpbM algorithm to fit linear
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subspaces in a low-dimensional representation of this affin-
ity matrix and test it on data containing 500 images – 50
frontal face images of each of the ten subjects of Yale Face
Database B. The number of subspaces (number of subjects)
is not known a priori.

Each image xi is vectorized and represented as a lin-
ear combination of the remaining images xj , j = 1, . . . , n;
(n = 500) with weights wij

xi =
∑
j,j 6=i

wijxj , i, j = 1, . . . , n. (14)

These weights are computed by solving a constrained least
squares estimation problem, subject to wij > 0 and wii =
0. The weights are then stacked in a matrix W such
that W(i, j) = wij . This matrix is usually quite sparse
due to less similarity between faces of different subjects,
which is true for this database. The symmetric affinity
matrix is formed as A =

(
W + W>) /2 where A is

500 × 500. The matrix A is then normalized by comput-
ing P = D−1/2AD−1/2, where D is a diagonal matrix
with D(i, i) =

∑
j A(i, j) =

∑
j A(j, i). The eigenvec-

tors corresponding to the r largest eigenvalues of P form a
n × r matrix Q. Images of same subject taken under vary-
ing lighting conditions generally lie in a d < r dimensional
subspace [12].

The clustering algorithms proposed in [25] and [3] used
frontal images of three out of the total ten subjects for evalu-
ation of their techniques. However, in all their experiments,
they used the uncropped face images where the presence of
substantial background makes the problem relatively eas-
ier. For example, Fig. 5 shows the face data of the three
subjects projected in three dimensions with and without the
background. The subspaces are well separated in the first
image due to different backgrounds of the three subjects.

Figure 5. Frontal faces of three subjects of Yale Database B pro-
jected to 3D. Left: Face images with background as used in [25]
and [3]. Right: Same images projected to 3D after cropping faces.

We evaluated our algorithm on all the 500 frontal face
images, manually cropped to remove the background and
downsampled to 64 × 64 size for faster computation. Fig.
6 shows three examples for each of the ten subjects. The Q
matrix was formed by using first r = 20 significant eigen-
vectors. With M = 5000 and N = 500, we used the
gpbM algorithm to fit two-dimensional subspaces, each cor-
responding to one subject in this 20-dimensional space. For
100 runs, the average, median and maximum errors over
500 images were 3.42%, 3.4% and 5.6%. Similar perfor-
mance was achieved on data containing images of three to

nine subjects (50 per subject), with the value of r varying
between 10 to 18. Results are omitted due to lack of space
and will be presented at the conference. In all experiments,
the performance was slightly worse for d = 3. For d = 2
and r = 20, we tested the method of [3] on data containing
the same 500 cropped images and it gave an error of 61.4%.

Figure 6. Example frontal face images of Yale Database B used in
our experiments.

4.3. Projective Motion Segmentation

The task of a motion segmentation algorithm is to seg-
ment multiple rigid body motions using the point trajecto-
ries across multiple frames. Several approaches have been
proposed which can be categorized into factorization based
[22, 23], clustering based [7, 13], robust estimation based
[9, 17, 5, 19], algebraic [25] and statistical methods [20, 11].
A brief review of most of these techniques can be found
in [7]. Except [5] and [19], all other methods assume that
the number of motions is known a priori. We focus on de-
tecting multiple motions on the Hopkins155 dataset without
knowing the number of motions. We show comparisons on
this dataset with state-of-the-art robust subspace estimation
methods.

Projective motion factorization corresponds to estimat-
ing the motion subspace of an object in a dynamic scene
perceived through perspective cameras. Consider only one
inlier structure. If n1 rigidly moving points lying on a sin-
gle motion are tracked over F frames, then the 2F image
coordinates obtained can be used to define feature vectors in
R2F . In general, these n1 vectors lie in a four-dimensional
subspace of R2F [22]. If the data is centered then the di-
mension of the subspace is only three. In homogeneous co-
ordinates, the ith image point in the jth frame, qji and its
corresponding 3D world point Qi are related as

λjiq
j
i = PjQi, i = 1, . . . , n1; j = 1, . . . , F (15)

where λji is the projective depth of qji and Pj is the 3 × 4
camera matrix for jth frame. Equations (15) can be com-
bined into a single factorization equation in matrix form as

T =


λ1
1q

1
1 λ1

2q
1
2 . . . λ1

n1
q1
n1

λ2
1q

2
1 λ2

2q
2
2 . . . λ2

n1
q2
n1

...
...

. . .
...

λF
1 qF

1 λF
2 qF

2 . . . λF
n1

qF
n1

 =MS

where M is the 3F × 4 motion matrix and S is the 4 ×
n1 structure matrix. The unknown projective depths λji are
estimated using the iterative method of [23].

The method starts by initializing all the depths to one.
The rank-four approximation T̃ of T is computed using
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SVD. The least-squares estimates of the depths are then ob-
tained from t̃ji , the entries of T̃ corresponding to λjiq

j
i as

λji =
(
t̃ji

)>
qji/||q

j
i ||

2 . (16)

where qji is the original image point and λji , t̃ji change in
each iteration. The iterations for estimating T̃ and λji end
when T̃ is within a small tolerance of T.

A point qji = [xji , yji , 1]>, together with
its depth λji , gives the vector of variables
yi =

[
(x1i , y

1
i , λ

1
i ), . . . (x

F
i , y

F
i , λ

F
i )
]>

and the
corresponding carrier vector is given by xi =[
(λ1ix

1
i λ1i y

1
i λ1i ) . . . (λ

F
i x

F
i , λ

F
i y

F
i , λ

F
i )
]>

. In this
case both yi and xi lie in R3F . As opposed to the affine
case [19], in projective motion estimation the carrier vector
is heteroscedastic due to the multiplication of the image
points with their depths. Assuming the noise corrupting the
depth and the image coordinates to be identical and known
upto a common scale σ2, the first order approximation of
the 3F × 3F covariance matrix Ci of xi, computed using
error propagation is Ci = σ2J>xi|yi

Jxi|yi
, where

Jxi|yi
=


J 1
i 0 0 . . . 0

0 J 2
i 0 . . . 0

...
...

...
. . .

...
0 0 0 . . . J F

i

 ; J j
i =

λji 0 0

0 λji 0

xji y
j
i 1

 .
For data containing multiple, non-degenerate motions,

we estimate the motion subspaces in two steps. In the first
step, assuming all the unknown depths to be equal, an affine
motion estimation is performed. This step returns the initial
estimates of all the motions along with their respective in-
liers. Due to the affine assumption, the inliers obtained for
each motion are not necessarily completely correct. In the
second step, for each motion, we construct a T matrix of the
inlier points and apply projective correction to recover the
depths (16). Each point is then multiplied with its depth and
the modified data is subjected to multiple projective motion
estimation using gpbM algorithm. Due to centering of the
elemental subset data for hypotheses generation, the dimen-
sionality of the null space is (2F − 3) for affine estimation
and (3F − 3) for projective.

In both the steps, we use fundamental matrices to di-
chotomize the points lying between the boundary of the
basin of attraction and the scale margin on either side of the
mode. The inliers of each motion are used to robustly esti-
mate the (F − 1)! fundamental matrices between all pairs
of frames using gpbM. The carrier vector and its covari-
ance matrix for fundamental matrix estimation were given
in Section 2. A boundary point xi is assigned to the motion
for which the sum of residuals of the epipolar constraint,
computed over all pairs of frames is minimum. For this
simple classification problem, the eight point algorithm for
estimating fundamental matrices is sufficient.

We present two groups of experiments. The Hopkins155
dataset has 155 sequences without unstructured outliers.
The parking lot sequence with three moving cars, has un-
structured outliers too. For consistency, all the examples
are processed with the values M = 500 and N = 500,
which are sometimes too large. In all the experiments, we
use only every 6th or 7th frame in the sequence, so the num-
ber of frames F = 5.

Hopkins155 Dataset. This dataset is available online
at http://www.vision.jhu.edu/data/hopkins155 and consists
of 120 two-motion and 35 three-motion sequences which
are divided into three categories – traffic, articulated and
checkerboard. The gpbM algorithm determines the number
of motions and the points belonging to each motion auto-
matically, without any user input. We compare the perfor-
mance of our algorithm with five other methods – General-
ized PCA [25], RANSAC, Local Subspace Affinity (LSA)
[27], pbM [19] and the Ordered Residual Kernel (ORK)
method [5]. The classification error is computed similar to
[5] and [25]. Except pbM and ORK, all other methods rely
on the user to specify the actual number of motions present
in the data. Additionally, RANSAC also requires an esti-
mate of the scale of inlier noise. To our knowledge, ORK
[5] has reported the best results on the Hopkins155 dataset
without any user intervention.

Tables 1 and 2 compare the results obtained by var-
ious methods on two and three-motion sequences. The
results of the REF (reference/control) method, gener-
ated for benchmarking, were obtained using the ground
truth information. Refer [24] for details. The re-
sults for GPCA, LSA and RANSAC were obtained
from [24]. The code for pbM was obtained from
http://coewww.rutgers.edu/riul/research/code.html. The re-
sults of ORK [5] were not reported for individual categories.
Since gpbM is based on random sampling, the results re-
ported here are averaged over 100 runs for each sequence.
The results of pbM are averaged over 20 runs.

Table 1. Percentage classification errors for 2-motion sequences.
Note, only pbM, ORK and gpbM are completely user independent.
Method REF GPCA LSA RANSAC pbM ORK gpbM
Traffic: 31 sequences
Mean 0.30 1.41 5.43 2.55 18.52 – 5.23
Articulated: 11 sequences
Mean 1.71 2.88 4.10 7.25 15.18 – 6.41
Checkerboard: 78 sequences
Mean 2.76 6.09 2.57 6.52 32.43 – 8.48
All: 120 sequences
Mean 2.03 4.59 3.45 5.56 28.25 7.83 7.60

Additionally, we obtained a median error of 5.6% for 2-
motion and 6.2% for 3-motion sequences. Results can be
further improved by handling degeneracies in the data.

Dataset with Unstructured Outliers. The sequence
contains four motions (background and three moving cars).
The points across various frames were matched using [10].
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(a) (b) (c) (d)
Figure 7. Sequence with four motions and unstructured outliers. (a) and (b) First and last frames with various motions marked. White
points marked + show unstructured outliers. (c) Motion factorization results using gpbM (only inliers are shown). (d) Confusion matrix.
M1, M2, M3 and M4 correspond to background, black car, silver car and maroon car respectively.

Table 2. Percentage classification errors for 3-motion sequences.
Note, only pbM, ORK and gpbM are completely user independent.
Method REF GPCA LSA RANSAC pbM ORK gpbM
Traffic: 7 sequences
Mean 1.30 19.83 25.07 12.83 22.00 – 3.10
Articulated: 2 sequences
Mean 2.66 16.85 7.25 21.38 18.32 – 4.28
Checkerboard: 26 sequences
Mean 6.28 31.95 5.80 10.38 26.08 – 11.10
All: 35 sequences
Mean 5.08 28.66 9.73 22.94 25.26 12.62 9.64

In total there were 474 points – 213 on the background, 78
on first car (black), 75 on second car (silver), 46 on third
car (maroon) and 62 unstructured outliers. Fig. 7 shows
the motion segmentation results using gpbM along with the
corresponding confusion matrix.

5. Conclusions
We presented a robust estimation method called the gen-

eralized projection based M-estimator (gpbM) which can
estimate multiple heteroscedastic inlier structures without
any user intervention. We showed its performance on chal-
lenging synthetic and real-world applications, but Hop-
kins155 dataset with synthetic outliers was not considered.
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