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Abstract. Robust multi-model fitting problems are often solved using
consensus based or preference based methods, each of which captures
largely independent information from the data. However, most existing
techniques still adhere to either of these approaches. In this paper, we
bring these two paradigms together and present a novel robust method
for discovering multiple structures from noisy, outlier corrupted data.
Our method adopts a random sampling based hypothesis generation
and works on the premise that inliers are densely packed around the
structure, while the outliers are sparsely spread out. We leverage con-
sensus maximization by defining the residual density, which is a simple
and efficient measure of density in the 1-D residual space. We locate
the inlier-outlier boundary by using preference based point correlations
together with the disparity in residual density of inliers and outliers. Fi-
nally, we employ a simple strategy that uses preference based hypothesis
correlation and residual density to identify one hypothesis representing
each structure and their corresponding inliers. The strength of the pro-
posed approach is evaluated empirically by comparing with state-of-the-
art techniques over synthetic data and the AdelaideRMF dataset.

1 Introduction

Many computer vision applications require estimation of parameters of a mathe-
matical model from a given set of observations. These observations (or features)
are typically obtained through a process agnostic to the model being fit and
therefore may contain gross outliers, i.e., points that do not belong to any struc-
ture. In order to fit the correct model and identify the inlier points, it is imper-
ative for the estimator to be robust to gross outliers and have a high breakdown
point. In cases when observations arise from multiple structures, inliers of one
structure appear as outliers to the other structures. Such points have come to
be called as pseudo-outliers. With multiple structures in the data, the fraction
of outliers (both gross and pseudo) can quickly go in excess of 90%. This makes
the requirement of a higher breakdown point more stringent.

Traditional robust regression techniques like least median of squares prove to
be lacking due to low breakdown points. To achieve higher levels of robustness,
random sampling based methods have become popular since RANdom SAmpling
Consensus (RANSAC) algorithm [4]. RANSAC and its many variants rely on
consensus set maximization for selecting a model from a set of model hypotheses
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generated by random sampling. In practice, RANSAC and its variants have been
very successful at several geometric fitting problems in computer vision|[7, 14, 18].
However, its performance crucially depends on a user-specified inlier threshold
measuring the scale of the inlier noise.

Apart from RANSAC like consensus based methods, another class of robust
mutli-model fitting algorithms that have emerged use preference analysis [13,1,
3,8,9,12]. These methods rely on rank-ordering the model hypotheses to gener-
ate a preference list for each data point. These preference lists define a feature
space where an appropriate distance measure like Jaccard distance [13] or Tan-
imoto distance [8] could be used to cluster the data points. Preference analysis
has also been applied successfully to guided sampling for hypothesis generation
[3,15], where preference lists were used to compute similarity between points.
In order to recover all the structures in the data, these methods also require a
user-defined parameter that is commensurate to the scale of inlier noise [13, 8].

User defined thresholds are not amenable to real-world scenarios where the
inlier noise scale may vary over time or may not be known a priori. Moreover,
in case of multiple structures, each structure may have different inlier noise dis-
tribution, necessitating a data-driven strategy for scale estimation. Inliers yield
a small residual value whereas outliers (or pseudo-outliers) can have arbitrarily
large residuals. Geometrically, we can say that inliers are densely packed around
the regression surface, while outliers are spread sparsely in the ambient space.
The density of points around the regression surface is a key factor in distinguish-
ing between inliers and outliers.

Fig. 1 uses an illustrative example to explain the different steps involved
in our proposed technique. Fig. la shows an example (‘sene’) from the Adelai-
deRMF [16] planar segmentation dataset. The task is to fit two homographies
corresponding to the two planes in the scene and identify the inliers in both
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Fig.1: An illustrative example - Density Preference Analysis (DPA), (a)Data,
(b)Residual density profile with darker curves indicating selected candidate hypothe-
ses, (¢) Density based point correlation, (d)Strong inlier candidates of each hypothesis
arrange in the order of structure membership(row wise) and point membership(column
wise), (e) Inlier scale (fraction) estimation, (f) Model selection and final segmentation.
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cases. We first generate model hypotheses, either using a random sampling or a
guided sampling based approach. For each hypothesis, the residual density pro-
file (Section 3.1) is computed. Fig. 1b shows the residual density plotted against
the points ordered in increasing order of residuals. The grey curves show the
residual density profiles for all model hypotheses, while the dark curves show
those of selected candidate hypotheses (Section 4.1). We compute the density
based point preferences (Section 3.3), which is used to obtain the point correla-
tion matrix as shown in Fig. 1c. For better visualization, the points are ordered
by group membership, with the bottom two blocks representing inliers corre-
sponding to the two structures. The point correlation matrix and the selected
hypotheses are used to identify strong inlier candidates for each hypothesis as
shown in Fig. 1d. The rows correspond to the selected candidate hypotheses,
while the columns represent the points. Again, for better visualization, both
rows and columns have been reordered using ground truth group membership.
For each row, the white pixel indicates a strong inlier candidate. We can see
that several rows have strong inliers that comprise of points mostly from the
same group. We use these points and the density drop rate to estimate the scale
for each model hypothesis (Section 4.2). Fig. le shows the number of inliers
identified using the scale estimates. In Fig. 1f, we show the final segmentation
obtained by applying our model selection algorithm (Section 4.3).

Consensus based methods capture the quality of each model hypothesis based
on the consensus set maximization criterion. On the other hand, preference based
methods naturally allow measuring the similarity (distance) between a pair of
points or a pair of models. By leveraging both these strategies, our technique is
able to automatically detect the number of structures in the data, estimate their
scale of inlier noise for each structure, perform the point-model assignment of
inliers, and identify the gross outliers. We summarize our contributions below:

— We define the residual density profile (Section 3.1), a simple measure of
density that effectively captures the disparity between density of inliers and
outliers for a given model.

— We define the density based point preferences (Section 3.3) and use it for
inlier scale estimation (Section 4.2).

— We develop a simple algorithm that uses density and preference based hy-
pothesis correlations for selecting one model for each structure and identify-
ing their associated inliers (Section 4.3).

The paper is organized as follows. In Section 2 we discuss recent progress in
robust multi-model fitting to put our contributions in perspective. We develop
the preliminaries in Section 3 and describe our proposed method in Section 4.
We show experimental results and comparisons on synthetic and real data in
Section 5 and conclude with a discussion of future directions in Section 6.

2 Related Work

A large amount of work has been done in robust model fitting over the last few
decades. In this section, we only discuss the work in context of the proposed
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method, mainly focusing on consensus based and preference based approaches
for discovering multiple structures. We also discuss a few recent techniques that
address multi-model fitting, albeit they don’t strictly fall in these categories.

Consensus based methods: Consensus based methods like RANSAC [4] and
its variants work on the premise that valid model hypotheses generate small
residuals for inlier points, i.e., inlier points form dense clusters close to zero in
the residual space. In [5], the RANSAC method was extended to extract multiple
homographies by using a sequential fit and remove approach, where the algo-
rithm detects one structure using RANSAC, removes the associated inliers and
repeats the process until no more structures are found. This sequential approach
has limitations because it can remove inliers erroneously (in case of incorrect
scale estimates, or overlapping structures or both), leading to difficulties in re-
covery of other structures in the following repititions. The multiRANSAC [18]
method avoids the sequential approach by maintaining inlier sets of all struc-
tures in parallel. However, it requires the user to input the number of structure
along with their respective inlier scales.

Torr et al. [14] proposed MLESAC and MSAC that use a maximum like-
lihood and M-estimator based criterion respectivly. The generalized projection
based M-estimator (gpbM) [10] was designed to deal with heteroscedastic, i.e.,
point-dependent noise in the data, which is often encountered in geometric com-
puter vision problems. It estimates the scale automatically and recovers the inlier
structure by maximizing the heteroscedastic kernel density estimate in the resid-
ual space. Since a single hypothesis is selected based on the maximum density,
gpbM is constrained to operate in a sequential fit-and-remove manner.

Preference based methods: Contrary to consensus based approaches, pref-
erence analysis reverse the roles of data points and model hypotheses. For each
data point, residuals are computed with respect to a number of hypotheses.
Given a data point, the data preference is defined as the set of hypotheses or-
dered by their residuals. Intuitively, the data point prefers a hypothesis if the
corresponding residual is small.

In [19], data preferences are used to estimate the number of modes, followed
by model selection and inlier recovery by analyzing histograms of residuals. Toldo
and Fusiello [13] pointed out the difficulty of mode detection using residual
histogram analysis in [19] and introduced a conceptual space, which represents
each data point as a binary vector. A user-specified inlier threshold was used
to generate the binary indicator vector identifying the preferred hypotheses.
The Jaccard distance was then employed for agglomerative clustering in this
conceptual space. In [1, 2], the authors presented a data preferences based Mercer
kernel, which following an outlier rejection step, was used for performing Kernel
Principal Component Analysis (KPCA) based subspace clustering.

Wang et al [17] introduced the Adaptive Kernel-Scale Weighted Hypotheses
(AKSWH) algorithm by combining the Iterative K-th Order Scale Estimator
(IKOSE) with a modified version of J-Linkage that clustered hypotheses instead
of points. Following a post-processing hypothesis fusion step, the cluster repre-
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sentatives are chosen as the candidate models, which along with their IKOSE
based scale estimates are used to identify the corresponding inliers.

More recently, T-linkage [8], a continuous version of J-linkage based on the
Tanimoto distance was proposed. T-linkage also requires the user to adjust a
tuning parameter approximating the scale of the inlier noise. Robust Preference
Analysis (RPA) [9] used preference analysis along with low-rank approximation
and nonnegative matrix facotrization to effectively implement a robust form of
spectral clustering. The affinity matrix for RPA is constructed by employing a
Cauchy weighting function on the data preference lists. The Random Cluster
Model Simulated Annealing (RCMSA)[11] formulated the multi-model fitting
problem in a simulated annealing framework. It used data preferences by con-
structing a weighted graph, which was used to iteratively generate stronger model
hypotheses using larger than minimal subsets.

In addition to robust multi-model fitting approaches, preference based meth-
ods have also been applied to guided sampling for hypothesis generation, which
is an important component of any robust multi-model fitting method. Multi-GS
[3], ITKSF [15] and DHF [16, 15] are a few techniques that work well in practice.

3 Notation and Preliminaries

Consider a set of n data points X = {x,...,x,} in R%. Let the set of structures
present in the data be denoted by K = {(6*',Z*), ..., (0**, 7**)}, where 8* and
Z** denote the true model parameters and the index set of inlier points respec-
tively of the it" structure. We define the true inlier fraction of each structure as
n* = ‘ITHI, i=1,.,kand n**=1— Zle n** as the fraction of outliers.

As with most robust multi-model fitting methods, our method begins with
a set of model hypotheses, generated by sampling minimal subsets of data. We
denote this initial set of model hypotheses by ¥y = {6°|i = 1, ..., Myp}. In order
to aid readability and comprehension, we will follow the convention where super-
scripts will always be indexed over the model hypotheses, while the subscripts
will be indexed over the data points. Given a model hypothesis 8%, the residual
for point x; is computed using the function ¢(6i7xj) : R — R, where R,
denotes the nonnegative real half-line.

Our goal is to recover the correct number of structures k£ and label the data
points in X as inliers of each of the structures by creating £ = {{1, ..., £,|¢; €
{0,...,k}}, where the label 0 identifies the outliers. The inlier points can then
be used for parameter estimation using an appropriate estimators such as least
squares or M-estimators.

3.1 Residual Density Profile

For a given model hypothesis 8°, we first compute the residual vector as

r' = [7“1 = ¢(9ivxl)’ ""7‘; = (Z)(givxn)] (1)
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We find a permutation set u’ = ui,ub,. ..,u’] for model hypothesis 0® such that
r;,v, < r;i <...,<ry: and thus we get a sorted residual vector, which is then
1 n

smootheé using an averaging filter of size [0.025n]. The smoothed ordered residual

vector pt= [rii,rih. . .mui} is used to define the residual density for 0 as
1 2 "
T phie vl e
J u®

J

) j = 1""’” (2)

where ¢ is of the order of 10~* and is used only to suppress very high densities.
The corresponding residual density vector as d' = [d¢, d5, ..., d!]. This residual
density estimate measures the number of points lying in a ball of radius p§ in
the residual space of 6°.

Using the residual density profile (2) has an advantage over residuals while
dealing with outliers. The residual values of outliers are large, however, the
magnitude varies with different model hypotheses. However, the residual density
values for both gross outliers and pseudo-outliers are small as well as independent
of the model hypothesis. This can be seen in the right part of Fig. 1b, where the
variance of density values for points in the outlier region is very small compared
to that of the inlier region. This property of the residual density profile helps us
estimate the inlier scale accurately (Section 4.2).

3.2 Residual based Hypothesis preferences

Similar to [15,12], we use the residual based hypothesis preferences and define
correlation between hypotheses. Given a hypothesis 6°, its residual based prefer-
ence list u’ is the rank ordering of points with smallest residual first. We compute
the hypothesis correlation between two hypotheses 8* and 6’ as

h(e ’01) = ?|u1:K n UJ1K| (3)

where u}, ;o = {u}, uj, ..., u% } is the top-K residual based hypothesis preferences
for 8°. We set K to 10% of all the data points in our experiments.

Using (3), a pairwise hypothesis correlation matrix H can be computed with
H;; = h(Bi, 0’ ). However, random sampling based techniques usually lead to a
large number of hypotheses. Since the complexity of computing H is quadratic
in the number of hypotheses, it becomes impractical to compute the full M x M
matrix H. In Section 4.1 we suggest a way of selecting a small subset of promising
hypotheses and mitigate this problem of complexity.

3.3 Density based Point Preferences

In general, a point preference list for a given data point is a rank ordering of
the model hypotheses based on some criterion. In [3, 15], a smallest residual first
criterion was used for ranking hypotheses. Chin et al. [3] made an important
empirical observation that inlier points belonging to the same structure have
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highly correlated data preferences. As opposed to the traditional residual based
point preferences, we use density based point preferences, which in turn are used
to estimate correlation between data points.

We find a permutation v; = [vjl-,vjz,. . .,UJMO] for a data point x; such that

dj; > d;? >,> d]v.Jl' . The permutation v; induces a density based point preference
list for x;, with vjl» being its most preferred model hypothesis. We define the nxn
point correlation matrix P by using the intersection kernel over the top-K density
based point preference lists

P = %M‘LK Ny K| (4)
where v} E = {v} v?, ..., vX} is the top-K density based preferences for point x;
and K is a small number of top preferences, set to [0.01Mj] in all our experi-
ments. As we use density based preferences, we need a much smaller K than in
case of residual based preferences. In Section 4.2, we use a variant of this point
correlation matrix P for identifying potential inliers of a given hypothesis.

4 Proposed Method: Density Preference Analysis

We will now develop our complete algorithm Density Preference Analysis' (DPA)
for recovering all inlier structures present in the data using the building blocks
described in the previous section.

4.1 Candidate Hypotheses Selection

We use the density based point preferences described in Section 3.3 to select
promising hypotheses from ;. The residual density d;- given by (2) roughly

measures the likelihood of x; being an inlier for the model hypothesis 0. If a
data point x; has a hypothesis 0" in their top-5 density based preference list, we
say the point votes for 8°. Since the points voting for 8° are likely to be inliers,
a selected hypothesis better represents the structure if more inliers vote for it.
Recall that the set v; is a permutation of the indices of ¥y, i.e., {1,..., Mo}
We create an index set by taking the union of hypothesis indices in the top-

n
5 preferences of all points, i.ec., |J vj®. We then reject spurious hypotheses
j=1
from this set by eliminating the ones having fewer than two votes. We refer
to this reduced set of hypothesis indices as Zy, and the corresponding set of
selected hypotheses as 95 C g having cardinality My < My. The set ¥4 contains
hypotheses that appear in the top-5 preferences of at least two points and thus
is expected to contain all the hypotheses that represent a structure well.
We emphasize that this step applies a conservative rule for rejecting poorly
generated hypotheses and is primarily used for a computational advantage of

! Matlab code available at https://www.iiitd.edu.in/~anands/files/code/dpa.
zip
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processing fewer hypotheses in the following steps. The goal is to ensure retain-
ing all the good hypotheses while rejecting many of the bad ones. We verified
empirically that values between top-2 to top-10 preferences and 2-5 minimum
votes do not affect the good hypothesis selection and thus the final accuracy
significantly, and only affect the computational time for the next steps.

4.2 Inlier Scale Estimation

The residual density values drop significantly across the inlier-outlier boundary.
We make use of this disparity in density to estimate the scale of inlier noise for
a given hypothesis.

Hypothesis Refinement: We construct J?, i € Zy, as the potential inlier set
for 8. 7' is initialized with all the points voting for 8". Note that J* will always
contain indices pointing to the original set X of data points. We normalize the
point correlation matrix P (4), such that each columns has unit ¢;-norm. We
compute the correlation score of all points with the points voting for 6° as

p=]]P, (5)

JET?

Points with a large ﬁé are highly correlated with the voting points in J* and are
strong contenders for inliers of 8. We define a threshold as 7% = mine 7 ﬁé and
impose the following criterion to include potential inliers in the set J*

T =1{j| ﬁé > 7' je[n]} ,where[n] ={1,..,n}. (6)

We create a similar set of potential outliers defined as the set of points that
do not appear as strong inliers for any of the selected hypotheses

O:[n]\{iji} (7)

The set O contains all the points that do not belong to any of the structures,
and thus are gross outliers. However, since J* only contain a subset of inliers,
O may contain some inliers as well. We eliminate the hypotheses for which the
largest residual of potential outliers is smaller than the largest residual of the
strong inliers, i.e., reject 8" if max;co p% < maxe 7i ph. This is a conservative
step to reject poor hypotheses that have unreliable inliers.

We use the strong inlier points in J* to obtain a refined estimate of 8" using
least squares and recompute the corresponding residual density profile (Section
3.1). This step has two positive effects: pure hypotheses that are representative
of the inlier structure result in better residual density profiles with increased
disparity between the densities of inliers and outliers. On the contrary, impure
hypotheses generate density profiles with a lower density drop across the inlier-
outlier boundary as will be seen in Section 4.3.
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Density Drop Rate: Let jTilo C J' contain 10% of points in J¢ that have
the largest residuals p; We expect these points to lie closer to the inlier-outlier
boundary. Using these potential inlier points, we define the density drop rate as

Adb = [T 10l Z]e‘ﬂlo(djmaz dj)

(®)

! e
Tl 20 iy (P~ Pl

where jiq; = argmax; d;- is the sorted residual index corresponding to maxi-
mum residual density. We use the density dj . where k4, = argmax; p,j €
Jt10 and the density drop rate Ad' in (8) to linearly extrapolate and estimate
the scale of inlier noise for 8" as

~ (d;cmam — dé?nm)

p = Adé + Pkyran 9)

where dbu = Maz;co d;- is the maximum density of outlier points for 0.
In the unlikely event when O = {0}, we set d, = 0. The residual index
Ei = argmin;ec(y ’p; — ,?)\Z‘ can be used to compute the inlier fraction as 7* = Ez/n
The inlier scale estimation using linear extrapolation of the density works very
well in practice as we observed in our experiments.

Using the scale estimates, we update the sets J°, i € Zy, to include all inliers

T ={j|lri<p’,jeh]} Viel,, (10)

4.3 Model Selection and Labeling

We now have a tentative point-model hypothesis association in J¢,i € Zy,. From
the candidate model hypotheses in Zy,, we need to identify ezactly one model
hypothesis for each structure. We further use the intuition that selected models
should be able to explain all the inlier points. We describe a simple process
(Algorithm 1) that uses the density drop rate and hypothesis preferences based
correlation to identify a model corresponding to each structure, associate their
inliers with the respective models and label the remaining points as gross outliers.
While the process is greedy, we empirically show that it works well in practice.

We use the set of candidate models Zy_, the corresponding inlier sets J¢, i €
Ty, and the preference based hypothesis correlation matrix H. We initialize the
set of all inliers 7 and the set of final models Zy as empty sets. The output
of the algorithm is a set of models, each corresponding to a structure in the
data. When a candidate model hypothesis has an associated inlier set 7% with
a sufficiently small overlap (< 7,) with J, we refer to it as a novel hypothesis.
We use 7,, which is typically set as a small percentage of points indicating the
tolerable overlap between structures. The second threshold 7, determines the
smallest acceptable correlation between hypotheses. Both these thresholds are
intuitive, easy to set and gracefully affect the performance accuracy. We identify
a model hypothesis 8" € ¥ with the largest density drop rate (line 7). This
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Algorithm 1: Model Selection

1 Input: variables - Ty,, J* (i € Iy,), H
2 thresholds - 7, 7
3 Output: Zy - index set of selected models
4 begin
5 Initialize: Zy = J = {0}
6 repeat
7 it ¢ argmax;ez,, Ad'
8 if |7 NJ"*| <7, then
9 Ty, =i U{i | |[TNT| <70, Hips > 1, Vi €Ly, }
10 /’L.\t < arg maxiezl,t ’;7\1
11 Ty =Ty Uiy
12 J=JUuJ"
13 Iﬁs :Iﬁs \Iﬁt
14 else
15 | Zo. =To. \ {is}

16 | until Zy_, = {0}

17 return Zy

aligns well with our intuition that a sharp density drop provides the strongest
evidence of an inlier structure. Furthermore, if 8% is novel, we construct an
index set Zy, of model hypotheses that are novel and highly correlated with o'
(line 9), else we ignore it by eliminating the corresponding entry from Zy_ (line
15). Candidate models that are not novel are likely to arise from hypotheses
that merge two distinct structures. From the subset Zy,, we select the model
hypothesis with the largest fraction of inliers and use it as the representative
for the corresponding structure (lines 10-11). We update the set of all inliers J
and the set of candidate models Zy_ as in (lines 12-13). We repeat the process
until all candidate models have been explored and Zy, is empty and return the
final set of models as Zy. We post-process the set of models, Zy, obtained from
Algorithm 1 by ignoring the models that have a very small fraction of inliers

% < 0.05. Now the number of structures recovered is the cardinality of Zy.
Finally, due to the overlap tolerance 7,, we have a small number of points that
may be in multiple inlier sets. We reassign such points to models for which the
residual density is the highest. This post-processing step results in a unique
point-model assignment and all the unassigned points are labeled as outliers.
Using the unique point-model assignment in J°, i € Zy, we can generate the
label set £. Our overall algorithm is summarized in Algorithm 2.

5 Experimental Results

In this section we evaluate our proposed approach, DPA, and compare with three
recent robust multi-model fitting approaches RPA [9], T-Linkage [8] and RCMSA
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Algorithm 2: Density Preference Analysis(DPA)

1 Input: Data - X , Model type -{synthetic, homography, fundamental}
2 Output: £ - Labeled data points

3 begin

4 Yo « generate model hypotheses using DHF [15].

5 d’ « for each 8° compute residual density vector using (2).

6 P « compute density based point correlation using (4).

7 ¥ < select candidate hypotheses (Section 4.1).

8 J*¢ « for each 0% € 9, identify strong inliers using (6).

9 O <« identify potential outliers using (7).
10 77’ + for each 0" € ¥, estimate inlier scale and update J? using (8-10)
11 {Zs} + model selection (Algorithm 1).
12 L «+ post-processing and point-model assignments (Section 4.3)

13 return £

[11] using three different datasets. We used publicly available implementations
provided by the respective authors and set the parameters as suggested in the
corresponding publications.

We report the classification accuracy (CA) averaged over 10 runs on all our
experiments. For our synthetic dataset, we use points along three concentric
circles, with each structure corrupted with a different scale of noise. For the
real experiments, we use the AdeleideRMF [16] data set, which consists of 19
image pairs each for homography based planar segmentation and fundamental
matrix based motion segmentation. Each image pair is provided with SIFT|[6]
point matches corrupted with outliers and their ground truth labeling.

For DPA, we set the hypothesis correlation threshold 75, to 0.6 for planar
segmentation and 0.75 in case of motion segmentation and the synthetic exper-
iments. We fixed the value of the overlap threshold 7, = [0.025n] for planar
segmentation and concentric circles. It was set to ([0.1n]) for fundamental ma-
trix based motion segmentation. A higher overlap threshold is justified as the
epipolar constraint imposed by the fundamental matrix on each rigid object is a
weaker constraint than the one from homography. We use DHF [15] for hypoth-
esis generation for all experiments.

We emphasize that contrary to the competing methods, our method, DPA,
does not require an estimate of the inlier noise scale. We follow [9] and provide
the standard deviation of all inlier residuals to each of the competing methods
(T-Linkage, RPA, and RCMSA). The parameters used are o, = 0.0098 for
synthetic data, o, = 0.013 for planar segmentation and o,, = 0.005 for motion
segmentation. As we will show in the synthetic experiments, this dependency
on the scale of noise is detrimental when different structures have significantly
different noise. This may also be the reason of relatively poor performance of
the competing methods on the planar segmentation experiments.
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Fig.2: Three Concentric Circles: (CA=Classification Accuracy(%)). Point mem-
bership is color coded. Outliers in green.

5.1 Synthetic Example: Three Concentric Circles

In our synthetic experiment, we generate three concentric circles centered at
[0.5,0.5](radius - 0.08,0.22,0.45), each having a different number of inlier points
(250,450, 650) corrupted with Gaussian noise of different standard deviation
(0.01,0.015,0.018). We added uniformly distributed 300 gross outliers in the
square region defined by (0,0) and (1,1). The data and the segmentation results
of all the methods are shown in Fig. 2. This seemingly simple experiment resulted
in poor performances by each of the methods RPA, T-Linkage and RCMSA,
with the average CA as 58.79%, 40.86% and 16.02%. DPA managed to achieve
an average CA of 86.20%. In the sample result shown in Fig. 2 both RPA and
T-Linkage fail to find one circle, while oversegment the others. RCMSA results
in a large oversegmentation and recovers 45 distinct structures, while RPA and
T-Linkage recover two structures on average. DPA is able to recover all the
three structures in each of the 10 runs. The poor performance of the competing
methods is seemingly due to the variation in noise scale of different structures.

5.2 Planar Segmentation

We perform planar segmentation by fitting multiple homographies to the point
matches. We use isotropic scaling of the point matches such that they have zero
mean and have unit average distance from the origin. We use Sampson error
as our residual function ¢(60,x). We report the quantitative results in Table 1
and see the average and median performance of DPA is superior than the other
methods. We also show sample results on two examples in Fig. 3, where the
other three competing methods perform poorly. The scale of noise in the sample
sequences, library and oldclassicwing, are too high and too low respectively as
compared to the input parameter o, [9]. The superior performance of DPA in
these cases is largely due to its residual density based scale estimation.

5.3 Motion Segmentation

We perform motion segmentation on the AdelaideRMF images by fitting multiple
fundamental matrices to the point matches. As preprocessing, we use isotropic
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Table 1: Planar Segmentation. Qutlier%- Percentage of outliers, #S - Num-
ber of true structures, Evaluation metric - Classification Accuracy (CA%) and

corresponding running time (T) in seconds.
Outlier% #S RPA T T-Link T RCMSA T DPA T

barrsmith 68.87 2 6290 201.67 57.93 62.71 84.81 2.88 97.68 35.79
bonhall 06.17 6 52.88 3712.26 60.41 1447.47 81.67 9.25 77.98 52.75
bonython 73.73 1 84.34 10591 64.34 48.28 87.27 3.71 96.57 30.06
elderhalla 60.74 2 99.07 176.65 69.53 57.67 75.23 3.13 96.17 37.58
elderhallb 47.84 3 81.96 269.08 57.80 83.63 71.45 3.08 85.90 39.02
hartley 61.56 2 81.38 290.07 71.63 136.58 77.38 3.75 96.91 43.45
johnsona 20.91 4 91.10 535.49 57.80 179.43 83.00 3.94 87.08 63.94
johnsonb 12.01 7 66.84 1676.11 70.72 540.97 79.41 6.18 74.36 75.83
ladysymon 32.48 2 79.16 185.15 77.72 62.01 75.27 2.78 90.46 8.33
library 55.34 2 63.53 163.32 82.51 50.80 77.02 2.89 95.21 6.08
napiera 62.91 2 73.25 269.69 81.26 102.22 70.66 3.39 80.56 3.36
napierb 39.51 3 75.14 271.21 76.76 73.62 74.29 2.96 83.63 11.05
neem 36.51 3 7851 247.19 53.03 63.91 71.87 3.23 80.21 7.79
nese 33.46 2 99.21 204.25 53.70 70.53 77.56 2.96 97.40 16.25
oldclassicswing  32.45 2 76.73 369.72 73.77 262.34 92.45 3.59 96.33 163.14
physics 45.28 1 100.0 40.12 68.49 26.54 54.53 15.85 98.40 11.84
sene 47.20 2 99.44 200.35 84.32 81.33 71.68 5.88 99.76 7.76
unihouse 16.55 5 88.00 9232.87 71.86 5890.28 97.02 16.37 93.17 85.83
unionhouse 76.50 1 76.14 226.33 77.29 116.83 90.06 5.70 98.34 16.22
mean 80.50 967.23 68.99 492.48 78.55 5.31 90.90 37.68
std 13.51 2174.70 9.92 1347.1 9.54 4.14 8.10 39.19
median 79.16 247.19 70.72 81.33 77.38 3.39 95.21 30.06

Table 2: Motion Segmentation. Notations are same as in table 1
Outlier% #S RPA T T-Link T RCMSA T DPA T

biscuit 57.16 1 98.36 38.75 83.09 19.17 95.15 4.50 82.12 14.42
biscuitbook 47.51 2 96.42 49.42 97.77 20.37 92,52 5.21 97.24 123.66
biscuitbookbox 37.21 3 95.83 45.70 88.80 11.69 83.71 3.36 95.14 46.78
boardgame 42.48 1 87.53 46.13 83.73 13.53 78.46 3.79 83.69 29.52
book 21.48 1 97.54 16.27 82.57 6.31 94.01 12.62 90.16 94.86
breadcartoychips 35.20 4 91.73 45.31 80.51 9.75 78.82 3.24 91.56 15.53
breadcube 32.19 2 95.9529.98 85.62 10.33 87.27 3.61 94.09 67.46
breadcubechips 35.22 3 95.57 36.91 82.00 9.66 83.17 3.38 94.61 24.64
breadtoy 37.41 2 97.15 44.39 96.81 14.61 78.37  3.77 90.59 15.45
breadtoycar 34.15 3 92.17 30.47 84.70 4.97 83.07 2.60 88.67 15.60
carchipscube 36.59 3 94.30 27.69 88.00 4.89 7885 2.70 86.30 14.13
cube 69.49 1 97.15 33.65 46.29 15.86 87.98 5.79 96.89 9.81
cubebreadtoychips  28.03 4 93.21 67.63 80.18 19.12 81.62 3.83 87.28 43.75
cubechips 51.62 2 96.48 39.59 95.14 13.99 90.32 5.82 92.92 75.64
cubetoy 41.42 2 96.31 31.60 78.80 10.74 89.64 5.45 93.61 86.55
dinobooks 44.54 3 84.78 64.21 78.56 22.90 72.28 5.76 84.17 73.19
game 73.48 1 9597 21.93 77.6 9.32 90.77 4.88 97.47 83.83
gamebiscuit 51.54 2 96.95 49.04 70.61 19.05 85.40 4.55 90.95 74.25
toycubecar 36.36 3 91.70 27.21 70.70 7.17 83.45 2.94 84.65 47.46
mean 94.47 39.25 81.65 12.81 84.99 4.62 90.64 50.34
std 3.55 13.21 11.36 5.44 6.16 2.20 4.86 34.03
median 95.95 38.75 82.57 11.69 83.71 3.83 90.95 46.78

scaling of the point matches such that they have zero mean and have unit average
distance from the origin. We use the epipolar constraint to compute the residuals.
We report the quantitative results in Table 2 and see the average and median
performance of DPA is inferior only to RPA. We also show sample results on two
examples in Fig. 3. We emphasize that despite not knowing the scale of inlier
noise, DPA performs competitively resulting in average CA of excess of 90%.
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Ground Truth T-Linkage RCMSA

) CA=76.28 (c) CA=83.67 ) CA=82.33 ) CA=97.67

() CA 81.00 (h) CA 76.20 CA 95.68 CA 96.57

(1) CA=96.52 (m) CA=83.48 (n) CA=90.04 (o) CA=96.09

(p) (q) CA=94.80 (r) CA=89.30 (s) CA=91.04 (t) CA=91.13

Fig.3: [Sample results] Planar Segmentation: Row 1 - library, Row 2- oldclas-
sicswing. Motion Segmentation: Row 3- breadcubechips,Row 4- cubebreadtoychips.
(CA=Classification Accuracy(%)). Point membership is color coded. Outliers in green.

6 Conclusion

We proposed a novel algorithm for the problem of robust multi-model fitting that
leverages both consensus and preference analysis. To characterize the consensus
based approach, we defined a residual density profile, which we further used
for computing point preferences. We further leveraged the disparity between
the density of potential inliers and outliers to estimate the scale of inlier noise
for each model hypothesis. We devised a greedy scheme that uses preference
based hypothesis similarity to identify a model hypothesis for representing each
structure. Finally, we used a simple post-processing step to eliminate small,
spurious structures and to generate a unique point to model assignment.

We showed empirical results using synthetic examples as well as the Adelai-
deRMF datasets. Without using any information about the scale of the noise, we
showed competitive performance with other state-of-the-art multi-model fitting
methods that primarily rely on preference analysis. Through our empirical anal-
ysis, we have shown that the residual density information judiciously combined
with preference analysis can improve the performance in robust model fitting
problems while reducing dependence on a priori knowledge about noise in data.
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