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Abstract—Embedding techniques such as word2vec [1] have
gained popularity due to their ability to represent words and
their semantic variants as real valued vectors. Biological sequence
analysis may also leverage unsupervised feature representations,
augmented with supervised learning techniques for tasks like
retrieval and classification. Algorithms that rely on distance met-
rics are computationally efficient and can handle large datasets,
however, default distances in the embedded space often yield
inadequate accuracy. In this paper, we use class labels to learn
a Mahalanobis distance in the embedded feature vector space
and show performance improvements over the default Euclidean
metric in both retrieval and classification tasks. The approach
may be readily generalised, and is and applicable to a wide range
of problems in sequence analysis and others involving discrete
entities or segmented data streams.

I. INTRODUCTION

Similarity computation between entities within a data set

is fundamental to clustering, classification and retrieval prob-

lems. Domains and data formats may vary considerably, from

text and genomic sequences to audio and video recordings.

Samples in a given data set are generally represented as

feature points in a vector space and the distance computa-

tion is performed through measures like Euclidean distance

or the cosine distance. The efficacy of a machine learning

algorithm may crucially depend on the feature representations

and the distance metrics that the feature space can support. In

this paper, we investigate two learning tasks – retrieval and

classification – over biological sequences, leveraging labeled

data to learn an appropriate distance metric, while obtaining

the underlying feature space embedding in an unsupervised

manner.

Feature learning in natural language processing has recently

received widespread attention thanks to the progress in word

embedding techniques – representations allowing improved

performance across a range of common machine learning

tasks. Word embeddings essentially involve a mapping of the

words in a text corpus to vectors in real number space (Rn),

where n is much smaller than the total dictionary size. A pop-

ular word embedding method, word2vec [1], uses a shallow

neural network to build distributed embeddings. Word2vec is

based on the distributional hypothesis [2] which states that

words with similar distributional properties (i.e. those that co-

occur regularly) also tend to exhibit semantic associations.

Arora et. al. [3] present a theoretical discussion of embedding

algorithms, while subsequent works [4], [5], [6] extend the

word embeddings framework to sentence embeddings from

the document corpus. Recent works [7], [8] have employed

the word2vec framework in biological sequence analysis,

obtaining representations for short subsequences (known as

k-mers) and for entire sequences. One of the strengths of

word2vec is that it is able to extract useful, low dimensional

semantic embeddings even for large data sets. Note that these

embedding algorithms are in some sense unsupervised, in that

the embedding of a given word is independent of the label of

the document it comes from.

The utility of embeddings lie in their potential as a feature

set for machine learning techniques, which often rely on

supervised learning to meet the downstream task requirements.

While the embedded feature space roughly preserves semantic

similarity, the lack of supervision limits the extent to which

task-specific context is captured. For example, in a retrieval

problem, the default Euclidean distance based ranking will ig-

nore any task-conditional correlation between different feature

dimensions. Similarly, a Euclidean distance based k nearest

neighbor (kNN) classifier could prove to be suboptimal in a

categorization task.

Using labeled data, we can learn a more appropriate distance

metric in the embedded feature space, e.g., the Mahalanobis

distance metric. The distance metric is learned by optimising

an objective that effectively increases the separation between

differently labeled data and reduces the separation between

identically labeled data points. Metric learning approaches

have been shown to work well for classification [9] and

information retrieval tasks [10] in domains as variant as text

and images.

In this work, we test the efficacy of using metric learn-

ing over the embeddings obtained for the labeled protein

sequences in [8] and [7] to address retrieval and classifica-

tion problems. These representations eliminate the need for

specialized, often expensive, similarity measures designed for

the input domain and provide a more computationally scalable

alternative of simple distance computations between vectors –

a critical requirement when dealing with huge bioinformatics

data sets – thereby making metric learning an effective way

of incorporating supervision. To perform metric learning over

the protein sequence embeddings, we use the Sparse Com-

positional Metric Learning (SCML) algorithm [11] (please

see section III). We observe that the learned distance metric

over the embedded feature space improves performance for

both the retrieval task – returning sequences belonging to the

same protein family as the query; and for the classification
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task – predicting the species of a gene sequence. Finally, we

conclude that using labeled data in effect improves the quality

of embeddings for some of the learning tasks.

II. RELATED WORK

A large number of metric learning approaches have been

proposed over the last decade and successfully applied in

various applications. While the literature of metric learning

algorithms is vast, in this section we restrict our attention to

approaches which align with the theme of this paper. Several

methods ([12], [13], [14]) have been proposed to learn a

metric for structured data. These methods directly operate

on the data and learn an edit-distance metric that measures

the cost of converting one object to another. However, these

methods are restricted to sequences and do not perform well

with feature vector representations. For a complete review

on the developments in edit distance related metric learning,

interested readers can refer to the survey by Bellet [15].

Similarly, Hua et. al. [16] learn a linear transformation with

the aim of reducing the distance of each data point to its p
nearest neighbors and increasing the distance to its p farthest

neighbors. However, this approach does not affect the inter-

class separation, thus limiting clustering and classification

performance. Further, with the advent of deep learning, some

studies have used metric learning on top of features obtained

from a deep network for applications such as person re-

identification [17]. In [18], low level features are improved

by performing a series of non linear transformations using

a deep network. This work optimizes an objective function

that comprises a loss function based on the Euclidean distance

between data samples, and a regularizer on the transformation.

However, our work differs significantly from these approaches.

In this paper, we propose a framework that benefits from both

the nonlinearity of feature embedding obtained by Seq2Vec

[8] and also a linear metric learned in the embedding space

that ensures that distances computed in the transformed space

are semantically consistent.

III. PROPOSED FRAMEWORK

In this section we provide a brief review of the embedding

and metric learning approaches used in our proposed frame-

work, before considering our strategy in more detail.

A. Biological Sequence Representations: Seq2Vec and ProtVec

A biological sequence can be seen as a finite string over

an appropriate symbol alphabet: for DNA the four nucleic

acids (Adenine (A), Thymine (T), Cytosine (C), and Guanine

(G)); and for protein sequences the set of 20 amino acids.

Comparison of such sequences is a key step in bioinformatics

search and analysis tasks. Traditionally, biological sequences

have been compared through local [19] or global [20] align-

ment algorithms, methods based on Dynamic Programming.

Alignment methods are quadratic in the sequence length

and are not robust to large scale genomic re-arrangements.

These limitations have given impetus to the development of

alignment free methods for comparing sequences.

word2vec: skip-gram doc2vec: DM

Fig. 1. Architecture for word2vec-skip gram and doc2vec-DM model. w(t)
represents tth word in the ith document, d(i).

Alignment free sequence comparison methods (see Vinga

et.al [21] for an early review) represent sequences as vectors

within a vector space – usually based on a normalised count

of the constituent k-mers – and employ some metric (e.g.

Euclidean, d2, Kolmogrov complexity etc.) to quantify the

similarity between these representations. While computation-

ally efficient, these approaches may not prove as accurate as

alignment based methods for some tasks, especially for short

queries

Recent developments in word embeddings in NLP can

also be exploited for representing biological sequences in a

vector space. As noted above, two recent studies ([7] and [8])

employed word2vec[1] based models to learn a representation

for k-mers extracted from the sequences. To obtain a sequence

representation, [7] used a linear combination of the k-mer
representations, while [8] used the doc2vec[4] model, naming

the resulting framework Seq2Vec, for generating sequence

representations. These models are shallow neural networks

with only one hidden layer, where the vector of weights acts

as a representation of the document or word. For training,

these models employ a predictive task over the samples (a

word-context pair) selected iteratively from the corpus of

sentences. In word2vec, a word and its neighboring words

(the context) make up the sample, whereas in doc2vec, the

context also includes a tag associated with the document to

which these words belong. Such tags are treated the same as

context words, but are included only with the words coming

from the corresponding document. In the classification task,

the word/context is predicted given the context/word as input.

The popular skip-gram (word2vec) and Distributed memory

(DM;doc2vec) architectures are shown in Figure 1.

B. Mahalanobis Distance Metric Learning

Given the vectors xi,xj ∈ R
n, the Mahalanobis distance

between them, dM(xi,xj), is parametrized by the n×n matrix

M and is given by

dM(xi,xj) =
√
(xi − xj)TM(xi − xj). (1)

When M � 0 is Positive Semi-Definite (PSD), this dis-

tance function qualifies as a pseudo-metric1 and satisfies the

1For a ‘semi’definite M, the condition dM(x1,x2) = 0 �⇒ x1 = x2,
thus making dM(·) a ‘pseudo’ metric.
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three properties: non negativity (dM(x1,x2) ≥ 0), symme-

try (dM(x1,x2) = dM(x2,x1)) and the triangle inequality

(dM(x1,x3) ≤ dM(x1,x2) + dM(x2,x3)). The goal of Ma-

halanobis distance metric learning is to learn a PSD matrix

M such that (dM(·, ·)) is small when the data points have the

same label and large otherwise. We use the method proposed

in [11] for metric learning and also briefly highlight the key

points that make it suitable for our framework.

1) SCML: Sparse Compositional Metric Learning (SCML)

[11] is a recent development in Mahalanobis distance metric

learning. It constructs a PSD matrix by learning a sparse com-

bination of rank-one, locally discriminative metrics extracted

from the training data

M =
K∑
i=1

wibib
�
i (2)

Here, wi ≥ 0 are the nonnegative weights corresponding to

rank one metrics formed by the basis elements bi ∈ R
n

extracted from several local regions of the training data.

Typically, K >> n and the set B = {bi}Ki=1 forms an

over-complete basis for the subspace spanned by the training

samples.

SCML optimizes the following objective function that com-

prises a loss term for the distance constraints imposed on the

labeled data and a regularizer on the weights

min
w

1

|T |
∑

(xi,xj ,xk)∈T
[1 + dw(xi,xj)− dw(xi,xk)]+

+ β ‖w‖1 (3)

Here, the first term is a large margin based hinge loss function

[·]+ = max(0, ·), T is the set of triplets, where distance

between xi and xj should be smaller that the distance between

xi and xk. Here xi and xj have same label while xi and xk

have different labels and β ≥ 0 is a regularization parameter.

The highlight of this approach is that the basis vectors

are made available from the training data, thus reducing the

number of learning parameters to K. This approach is suitable

for embeddings as opposed to other state of the art techniques,

where number of parameters increases quadratically with the

dimension of the data. Moreover, most approaches perform

a projection onto the PSD cone at every step, requiring

eigenvalue decomposition and incurring an additional cost of

O(n3), thus limiting their applicability in high dimensions.

C. Metric Learning on Embeddings

Most of the protein sequences of a family share similarity

over the entire length or contain smaller similar regions. But

some sequences do not share strong similarity with other

members of the family. The presence of such diverse sequences

makes it difficult to obtain similar representations for all the

members of family, even using the ProtVec and Seq2vec

models, as these rely on shared patterns among sequences.

In such cases, learning a suitable metric by using the labeled

data has proven to measure the similarity effectively. Figure

2 shows the complete pipeline of our proposed framework;

Fig. 2. Proposed Framework: Block A – Dataset(sequences), Block B(B1
and B2) – Seq2Vec/ProtVec (module for representation learning) and Metric
Learning module (for learning metric over training feature vectors), Block C
– ML technique for classification or retrieval

block A represents the available sequences that are divided

into training-40% and testing-60% set, discussed in detail in

section IV; the following block B represents our strategy and

is explained with two blocks: Representation learning block

(B1) and metric learning block (B2). Vector representations for

all the sequences are learned either by Protvec or Seq2vec in

block B1. The features corresponding to the training sequences

are then passed to B2 to learn a distance metric. In the testing

phase, the representations of the test sequences from block

B1 are passed to block C, along with the metric learned

from block B2 and the training sequences. For classification

using the kNN classifier, block C outputs the class of the test

sequence, whereas in the retrieval task it gives the ranked list

of training sequences, based on distances from the test vector

as computed with the metric learned from the training vectors.

Fig. 3. Distribution of number of sequences

IV. EXPERIMENTS AND RESULTS

As noted earlier, we evaluate the proposed framework

on two problems in bioinformatics, namely, protein family

prediction (classification) and homologous sequence retrieval.

2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)



2 classes 4 classes
Euclidean Metric 1.47 ± 1.44 4.39±0.22
Learned Metric 1.10 ±1.01 3.45 ±0.21

TABLE I
10-NN CLASSIFICATION ERROR (IN %) FOR DIFFERENT NO OF CLASSES FOR SEQ2VEC REPRESENTATION WITH AND WITHOUT METRIC LEARNING. ALL

RESULTS ARE AVERAGED OVER 5 RANDOM SPLITS OF DATA

A. Experimental Setup

For performance evaluation and comparison, we select a

data set of 25 protein families (labeled classes) from the meta

data provided by [7] and [22]. These families contain a varying

number of sequences, ranging from 1000 to 3084. We use

the Seq2Vec [8] method to generate the feature vectors of

dimensions 100 and 250, while we utilize already learned

feature vectors of 100 dimensions from ProtVec2. For training

the Mahalanobis matrix M using SCML, the number of basis

vectors K and the regularization parameter β are fixed to 5000

and 10−5 respectively. For each training sample in the training

set, we identify 3 nearest neighbors (using Euclidean distance)

having same label and 10 nearest neighbors having different
labels. We use all combinations of these points and generate

30 triplet constraints for each training sample.

B. Protein family prediction

Identifying the family of an unlabeled protein sequence

is an important classification problem in bioinformatics. To

train the Mahalanobis distance matrix M using the SCML

algorithm, we divide the data into 40% training set (annotated)

while keeping the remaining 60% of the data as a test set

(unannotated sequences). Also, in order to consider the uneven

distribution (figure 3) of number of sequences across families,

we selected 40% of the sequences from each family for

training, while the remaining 60% sequences from each family

were reserved for the test set.

We report results averaged over 5 such random splits of

the data. Classification of sequences into protein families is

performed using the NN algorithm. Distances are computed

using the learned Mahalanobis matrix M, and we compare it

with the default of M = I for both ProtVec and Seq2Vec based

representations. Classifier performance is reported below for

randomly selected sets of 2, 4 and 25 classes as noted above.

Results in Table IV-B validate that the classification accuracy

using the NN classifier increases when distances are calculated

using the learned M. The trends of increased accuracy con-

tinue to hold (table II) for the case where the number of classes

was increased to 25. These results also suggest that metric

learning consistently improves the classification accuracy as

we vary the dimension of the representation.

A more detailed picture of classification accuracy for vary-

ing neighborhood size for the kNN classifier is provided

in figure 5. The decrease in classification performance with

increased neighborhood size may be attributed to the low inter

class distances in embedded space. The superior performance

observable in each case for the learned metric (the upper curve

2http://dx.doi.org/10.7910/DVN/JMFHTN.

in each pair) suggests a possible increase in the inter class

distances in the linearly transformed feature space.

C. Homologous sequence retrieval

Retrieving homologous sequences i.e. sequences which be-

long to the same family as that of the given query (sequence),

is a challenging problem.

We evaluate our framework for this task. For data partition-

ing we follow the same setup as discussed in section IV-B,

and report average results over 5 random splits of the data. In

this experiment, for each test sequence (query), the training

samples are ranked based on their distance from the query.

Ideally, we expect to retrieve all sequences homologous to the

query at the top of the ranked list. To evaluate the retrieval

performance, we calculate precision at 11 recall levels, i.e.

0.0, 0.1,......1; for 0.0 recall, the precision is considered to

be 1.0 by definition. To bound the effort of searching for

a relevant sequence, we limit our search to the top 1500

results. Precision at any given recall level is set to 0.0 if

the relevant sequences at that level are not found in this

group. The precision values for all possible queries for each

of the classes are then averaged. We report these results in

figure 4 for Seq2Vec based representations and ProtVec for the

learned metric. It is evident from figure 4 that using a learned

metric with these unsupervised embeddings performs better

than Euclidean metric for similarity computation. Further, we

observe that while the improvement in classification accuracy

is not significant, the retrieval performance improves by a

significant margin. This may be due do the discriminative

nature of the distance constraints imposed in the SCML

framework, that aims to reduce the distance between similar

pair as compared to dissimilar pair by a given margin. This

effectively improves the data distribution in the embedded

space and allows one to retrieve sequences from same family

over others given a query.e note in particular that the learned

Seq2Vec metric provides strong early precision and maintains

a clear advantage over other methods across the spectrum,

although there remains some scope for improved precision at

higher recall levels.

V. CONCLUSION

Word embeddings provide a meaningful mapping to a real

valued vector space in a manner that preserves the proximity

of features representing semantically similar words. Such

embeddings can also capture the similarity between higher

level structures such as sentences, and between entities in other

domains such as bioinformatics, in which we are concerned

primarily with similarity between biological sequences. In this

work we add a layer of supervision into these earlier mappings.
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Seq2vec (250 dim) Protvec (100 dim) Seq2vec (100 dim)
Euclidean Metric 8.21 ±0.05 14.00 ±0.13 13.85 ±0.21
Learned Metric 7.56± 0.06 12.88 ±0.23 12.58± 0.22

TABLE II
10-NN CLASSIFICATION ERROR (IN %) FOR BOTH SEQ2VEC AND PROTVEC REPRESENTATIONS WITH AND WITHOUT METRIC LEARNING. ALL RESULTS

ARE AVERAGED OVER 5 RANDOM SPLITS OF DATA

Fig. 4. Precision calculated at every 10% recall for Seq2Vec based represen-
tations and ProtVec, with and without metric learning. All results shown, are
averaged over 5 random splits of data.

Fig. 5. Comparison of Classification Accuracy (in %) of Seq2vec represen-
tation with different embedding dimensions

By including labels of the data points, and using them to

learn a task specific metric, we are able to demonstrate clear

advantages over purely unsupervised embeddings for retrieval

and classification tasks. In closing, we note that the approach

is not limited to the tasks explored in this paper, and it appears

straightforward to generalise these ideas to encompass other

tasks in sequence analysis and to other problems involving

discrete entities or segmented data streams.
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